DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

UNIT I INTELLIGENT AGENTS

Introduction to Al -Agents and Environments —Concept of rationality —Nature of
environments —Structure of agents -Problem solving agents —search algorithms —uninformed
search strategies

Introduction

e Artificial Intelligence is the branch of computer science concerned with making
computers behave like humans. (Or) Artificial Intelligence is the ability of a computer to
act and think like human

e Major Al textbooks define artificial intelligence as "the study and design of intelligent
agents,” where an intelligent agent is a system that perceives its environment and takes
actions which maximize its chances of success.

e John McCarthy, who coined the term in 1956, defines it as "the science and engineering
of making intelligent machines, especially intelligent computer programs."

e The definitions of Al according to some text books are categorized into four approaches
and are summarized in the table below :

= Systems that think like human
= Systems that act like human

= Systems that think rationally
= Systems that act rationally

Thinking Humanly

“The exciting new effort to make comput-
ers think ... machines with minds, in the
full and literal sense.” (Haugeland, 1985)

“IThe auwtomabion of] activities that we
associate with human thinking, activities
such as decision-making, problem solv-
ing, leaming ... (Bellman, 1978}

Thinking Rationally
“The study of mental faculties through the

use of computational models™
(Chamiak and McDermott, [983)

“The study of the computations that make
it possible to perceive, reason, and act.™
(Winston, 1992)

Acting Humanly

“The art of creating machines that per-
form functions that reguire intelligence
when performed by people.” (Kureweil,
1990)

“The study of how to make computers do
things at which, at the moment, people are
better.” (Rich and Knight, 1991)

Acting Rationally

“Computational Intelligence is the stody
of the design of intelligent agents.” (Poole
et al., 1998)

“Al . _.is concemed with intelligent be-
havior in artifacts™ (Nilsson, [998)

Figure 1.1

Some definitions of artificial intelligence, organized into four categories.

Thinking humanly: The cognitive modeling approach

To say that a program thinks like a human, consider the human thinking which can be expressed
in three ways:

introspection—trying to catch our own thoughts as they go by;

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

psychological experiments—aobserving a person in action;
brain imaging—observing the brain in action.

Once there is sufficient precise theory of the mind, it becomes possible to express the theory as a
computer program

Cognitive Study of Human mind:

Itis a highly interdisciplinary field which combines ideas and methods from psychology, computer
science, philosophy, linguistics and neuroscience.

The goal of cognitive science is to characterize the nature of human knowledge and how that
knowledge is used, processed and acquired

Acting humanly: The Turing Test approach

The Turing Test, proposed by Alan Turing(1950), was designed to provide a satisfactory
operational definition of intelligence. A computer passes the test if a human interrogator, after
posing some written questions, cannot tell whether the written responses come from a person or
from a computer.

The computer would need to possess the following capabilities:

* natural language processing to enable it to communicate successfully in English

 knowledge representation to store what it knows or hears;

« automated reasoning to use the stored information to answer questions and to draw new
conclusions;

» machine learning to adapt to new circumstances and to detect and to discover new patterns

« computer vision to perceive object and

« robotics to manipulate objects and to move about

Thinking rationally: The “laws of thought” approach
e Aristotle The concept of “right thinking” was proposed by Aristotle. His syllogisms
provided patterns for argument structures that always yielded correct conclusions when
given correct premises.
e The canonical example starts with Socrates is a man and all men are mortal and concludes
that Socrates is mortal.
e These laws of thought were supposed to govern the operation of the mind; their study
initiated the field called logic.
e Logicians developed a precise notation for statements about objects in the world and the
relations among them .Logics are needed to create intelligent systems.
Drawbacks:
First, it is not easy to convert statements into logic when the knowledge is less than 100% certain.
Second, there is a big difference between solving a problem “in principle” and solving it in
practice. Even problems with just a few hundred facts can exhaust the computational resources of
any computer unless it has some guidance as to which reasoning steps to try first.
Acting rationally: The rational agent approach
Agent
An agent is just something that acts operate autonomously, perceive their environment, persist
over a prolonged time period, adapt to change, create and pursue goals. A rational agent is one that
acts so as to achieve the best outcome

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

One way to act rationally is to deduce that a given action is best and then to act on that conclusion.
On the other hand, there are ways of acting rationally that cannot be said to involve inference.

The rational-agent approach to Al has two advantages over the other approaches. First, it is more
general than the “laws of thought” approach because correct inference is just one of several
possible mechanisms for achieving rationality. Second, it is suitable for scientific development.

Beneficial machines

The standard model has been a useful guide for Al research since its inception, but it is probably
not the right model in the long run. The reason is that the standard model assumes a fully specified
objective to the machine.

For an artificially defined task such as chess or shortest-path computation, the task comes with an
objective built in—so the standard model is applicable. As with the real world, however, it
becomes more and more difficult to specify the objective completely and correctly

The value alignment problem: the values or objectives put into the machine must be aligned with
those of the human.

The Foundations of Artificial Intelligence

Philosophy:

Avristotle was the first to formulate a precise set of laws governing the rational part of the mind.
He developed an informal system of syllogisms for proper reasoning, which in principle allowed
one to generate conclusions mechanically, given initial premises. This constitutes rationalism
Dualism:There is a part of the human mind that is outside of nature, exempt from physical laws.
An alternative to dualism is materialism, which holds that the brain’s operation according to the
laws of physics constitutes the mind.

Empiricism: Knowledge is based on experience and experimentation.

Principle of induction: General rules acquired by exposure to repeated associations between their
elements.

The confirmation theory attempted to analyze the acquisition of knowledge from experience by
quantifying the degree of belief that should be assigned to logical sentences based on their
connection to observations that confirm or disconfirm them.

The final element in the philosophical picture of the mind is the connection between knowledge
and action. Jeremy Bentham and John Stuart Mill promoted the idea of utilitarianism: that rational
decision making based on maximizing utility should apply to all spheres of human activity,
including public policy decisions made on behalf of many individuals. Utilitarianism is a specific
kind of consequentialism: the idea that what is right and wrong is determined by the expected
outcomes of an action. In contrast, Immanuel Kant, in 1875 proposed a theory of rule-based or
deontological ethics, in which “doing the right thing” is determined not by outcomes but by
universal social laws that govern allowable actions, such as “don’t lie” or “don’t kill.”

Mathematics

The fundamental ideas of Al required the mathematization of logic and probability and the
introduction of a new branch of mathematics: computation.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

The idea of formal logic can be traced back to the philosophers of ancient Greece, India, and
China, but its mathematical development really began with the work of George Boole who worked
out the details of propositional, or Boolean, logic.

The theory of probability can be seen as generalizing logic to situations with uncertain
information—a consideration of great importance for Al. Gerolamo Cardano first framed the idea
of probability, describing it in terms of the possible outcomes of gambling events.

The history of computation is as old as the history of numbers, but the first nontrivial algorithm
is thought to be Euclid’s algorithm for computing greatest common divisors. Alan Turing tried to
characterize exactly which functions are computable—capable of being computed by an effective
procedure. The Church—Turing thesis proposes to identify the general notion of computability with
functions computed by a Turing machine (Turing, 1936). Turing also showed that there were some
functions that no Turing machine can compute. The theory of NP-completeness, pioneered by
Cook and Karp , provides a basis for analyzing the tractability of problems.

Economics

Most people think of economics as about money but economist will say that Economics is no
longer the study of money; rather it is the study of desires and preferences.

Decision theory, which combines probability theory with utility theory, provides a formal and
complete framework for individual decisions (economic or otherwise) made under

uncertainty.

A formalized class of sequential decision problems called Markov decision processes is used in
decision theory

Work in economics and operations research has contributed much to the notion of rational agents.

Neuroscience

Neuroscience is the study of the nervous system, particularly the brain. There are localized areas
of brain responsible for specific cognitive functions for example area in the left hemisphere is
responsible for speech production. Brain consists of largely of nerve cells, or neurons, Camillo
Golgi developed a staining technique allowing the observation of individual neurons. « Thus a
collection of simple cells can lead to thought, action, and consciousness. There are mapping
between areas of the brain and the parts of the body that they control or from which they receive
sensory input.

The measurement of intact brain activity began in 1929 with the invention by Hans Berger of the
electroencephalograph (EEG). The development of functional magnetic resonance imaging
(fFMRY) is giving neuroscientists unprecedentedly detailed images of brain activity.

Psychology

The origins of scientific psychology are usually traced to the work of the German physicist, the
scientific method to the study of human vision. In 1879, Wundt opened the first laboratory of
experimental psychology, at the University of Leipzig. Wundt insisted on carefully controlled

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

experiments in which his workers would perform a perceptual or associative task while
introspecting on their thought processes.

Cognitive psychology, which views the brain as an information-processing device, Craik specified
the three key steps of a knowledge-based agent: (1) the stimulus must be translated into an internal
representation, (2) the representation is manipulated by cognitive processes to derive new internal
representations, and (3) these are in turn retranslated back into action.

Today IA(Intelligence Augumentation) and Al are the two sides of the same coin, with the former
emphasizing human control and the latter emphasizing intelligent behavior on the part of the
machine. Both are needed for machines to be useful to humans.

Computer engineering

Intelligence and atrifacts are needed for the success of Al. The first operational computer was used
for deciphering German messages. The first operational programmable computer was the Z-3.The
first electronic computer, the ABC, was assembled it was then ENIAC, developed as part of a
secret military project that proved to be the most influential forerunner of modern computers.Each
generation of computer brings in speed and capacity and decrease in price

Of course, there were calculating devices before the electronic computer.The first programmable
machine was a loom, that used punched cards to store instructions for the pattern to be woven. In
the mid-19th century, Charles Babbage designed two computing machines, neither of which he
completed. The Difference Engine was intended to compute mathematical tables for engineering
and scientific projects. Analytical Engine included addressable memory, stored programs based
on Jacquard’s punched cards, and conditional jumps. Al also owes a debt to the software side of
computer science, which has supplied the operating systems, programming languages, and tools
needed to write modern programs

Control theory and cybernetics

The first self-controlling machine developed was a water clock with a regulator that maintained a
constant flow rate. Other examples of self-regulating feedback control systems include the steam
engine governor, and the thermostat.

James Clerk Maxwell initiated the mathematical theory of control systems.The control theory
developed an interest in biological and mechanical control systems and their connection to
cognition.They viewed purposive behavior as arising from a regulatory mechanism trying to
minimize “error”—the difference between current state and goal state.

Cybernetics is the science of communications and automatic control systems in both machine and
living things. Modern control theory, especially the branch known as stochastic optimal control,
has as its goal the design of systems that maximize a cost function over time.

Linguistics

Verbal Behavior was a comprehensive, detailed account of the behaviorist approach to language
learning. Chomsky pointed out that the behaviorist theory did not address the notion of creativity
in language—it did not explain how children could understand and make up sentences that they
had never heard before. syntactic models could handle this as it was was formal enough that it
could in principle be programmed.

Modern linguistics and Al, then, were “born” at about the same time, and grew up together,
intersecting in a hybrid field called computational linguistics or natural language processing.

AD8402-ARTIFICIAL INTELLIGENCE-I

The History of Artificial Intelligence

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

One quick way to summarize the milestones in Al history is to list the Turing Award winners:
Marvin Minsky (1969) and John McCarthy (1971) for defining the foundations of the field based
on representation and reasoning; Ed Feigenbaum and Raj Reddy (1994) for developing expert
systems that encode human knowledge to solve real-world problems; Judea Pearl (2011) for
developing probabilistic reasoning techniques that deal with uncertainty in a principled manner;
and finally Yoshua Bengio, Geoffrey Hinton, and Yann LeCun (2019) for making “deep learning”
(multilayer neural networks) a critical part of modern computing. The rest of this section goes into
more detail on each phase of Al history.

The inception of artificial intelligence (1943-1956)

The first work that is now generally recognized as Al was done by Warren McCulloch and
Walter Pitts (1943).They proposed a model of artificial neurons in which each neuron is
characterized as being “on” or “off,” with a switch to “on” occurring in response to
stimulation by a sufficient number of neighboring neurons. McCulloch and Pitts also
suggested that suitably defined networks could learn.

Edmonds, built the first neural network computer in 1950. The SNARC, as it was called,
used 3000 vacuum tubes and a surplus automatic pilot mechanism that can simulate a
network of 40 neurons. Later, at Princeton, Minsky studied universal computation in neural
networks. Alan Turing introduced the Turing test, machine learning, genetic algorithms,
and reinforcement learning.

In 1955, John McCarthy of Dartmouth College convinced Minsky, Claude Shannon, and
Nathaniel Rochester to help him bring together U.S. researchers interested in automata
theory, neural nets, and the study of intelligence. They organized a two-month workshop
at Dartmouth in the summer of 1956. This was the first official usage of McCarthy’s term
artificial intelligence.

Despite this optimistic prediction, the Dartmouth workshop did not lead to any
breakthroughs. Newell and Simon presented perhaps the most mature work, a mathematical
theorem-proving system called the Logic Theorist (LT). Simon claimed, “We have
invented a computer program capable of thinking non-numerically, and thereby solved the
venerable mind-body problem.”

Newell and Simon also invented a list-processing language, IPL, to write LT. They had no
compiler and translated it into machine code by hand. To avoid errors, they worked in
parallel, calling out binary numbers to each other as they wrote each instruction to make
sure they agreed.

Early enthusiasm, great expectations (1952—-1969)

Newell and Simon followed up their success with LT with the General Problem Solver, or
GPS. Unlike LT, this program was designed from the start to imitate human problem-
solving protocols. Within the limited class of puzzles it could handle, it turned out that the
order in which the program considered subgoals and possible actions was similar to that in
which humans approached the same problems. Thus, GPS was probably the first program
to embody the “thinking humanly” approach.

The success of GPS and subsequent programs as models of cognition led Newell and
Simon (1976) to formulate the famous physical symbol system hypothesis, which states
that “a physical symbol system has the necessary and sufficient means for general
intelligent action.”

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

At IBM, Nathaniel Rochester and his colleagues produced some of the first Al programs.
Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was able to
prove theorems that many students of mathematics would find quite tricky.

Samuel wrote program on checkers (draughts) that eventually learned to play . He thereby
disproved the idea that computers can do only what they are told to: his program quickly
learned to play a better game than its creator.

In 1958, John McCarthy made two important contributions to Al. In MIT Al Lab .He
defined the high-level language Lisp, which was to become the dominant Al programming
language for the next 30 years. McCarthy also invented the Advice Taker, a hypothetical
program that would embody general knowledge of the world and could use it to derive
plans of action. 1958 also marked the year that Marvin Minsky moved to MIT.

In 1963, McCarthy started the Al lab at Stanford. His plan to use logic to build the ultimate
Advice Taker was advanced by J. A. Robinson’s discovery in 1965 of the resolution
method (a complete theorem-proving algorithm for first-order logic;).

At MIT, Minsky supervised a series of students who chose limited problems that appeared
to require intelligence to solve. These limited domains are known as microworlds.

James Slagle’s SAINT program (1963) was able to solve closed-form calculus integration
problems typical of first-year college courses.

Tom Evans’s ANALOGY program (1968) solved geometric analogy problems that appear
in 1Q tests.

Daniel Bobrow’s STUDENT program (1967) solved algebra story problems.The most
famous microworld is the blocks world, which consists of a set of solid blocks placed on
a tabletop (or more often, a simulation of a tabletop). A typical task in this world is to
rearrange the blocks in a certain way, using a robot hand that can pick up one block at a
time.

A dose of reality (1966-1973)

The early Al Systems tuned out to fail when tried on wider selection of problems and more
difficult problems

There were two main reasons for this failure. The first was that many early Al systems
were based primarily on “informed introspection” as to how humans perform a task, rather
than on a careful analysis of the task, what it means to be a solution, and what an algorithm
would need to do to reliably produce such solutions.

The second reason for failure was a lack of appreciation of the intractability of many of the
problems that Al was attempting to solve. Most of the early problem-solving systems
worked by trying out different combinations of steps until the solution was found. This
strategy worked initially because microworlds contained very few objects and hence very
few possible actions and very short solution sequences.

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, Perceptrons (a simple form of
neural network) could be shown to learn anything they were capable of representing, they
could represent very little.

Expert systems (1969-1986)

The picture of problem solving that had arisen during the first decade of Al research was of a
general-purpose search and now is to use more powerful, domain-specific knowledge that allows
larger reasoning steps and can more easily handle typically occurring cases in narrow areas of
expertise.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

e The DENDRAL program was an early example of this approach. It helps to solve the
problem of inferring molecular structure from the information provided by a mass
spectrometer. The significance of DENDRAL is that it uses large number of special rules.

e The next major effort was the MYCIN system for diagnosing blood infections. With about
450 rules, MYCIN was able to perform as well as some experts, and considerably better
than junior doctors.

e The importance of domain knowledge was also apparent in the area of natural language
understanding. SHRDLU system was designed for this purpose.

e The first successful commercial expert system, R1, began operation at the Digital
Equipment Corporation (McDermott, 1982). The program helped configure orders for new
computer systems.

e Overall, the Al industry boomed from a few million dollars in 1980 to billions of dollars
in 1988, including hundreds of companies building expert systems, vision systems, robots,
and software and hardware specialized for these purposes.

The return of neural networks (1986—present)

In the mid-1980s at least four different groups reinvented the back-propagation learning
algorithm first developed in the early 1960s. The algorithm was applied to many learning problems
in computer science and psychology, and the widespread dissemination of the results in the
collection Parallel Distributed Processing called “Connectionist Model”

Probabilistic reasoning and machine learning (1987- present)

e The brittleness of expert systems led to a new, more scientific approach incorporating
probability rather than Boolean logic, machine learning rather than hand-coding, and
experimental results rather than philosophical claims.

e In the 1980s, approaches using hidden Markov models (HMMs) came to dominate the
area of speech recognition. Two aspects of HMMs are relevant. First, they are based on a
rigorous mathematical theory. Second, they are generated by a process of training on a
large corpus of real speech data.

e 1988 was an important year for the connection between Al and other fields, including
statistics, operations research, decision theory, and control theory. Judea Pearl’s
Probabilistic Reasoning in Intelligent Systems led to a new acceptance of probability and
decision theory in Al Pearl’s development of Bayesian networks yielded a rigorous and
efficient formalism for representing uncertain knowledge as well as practical algorithms
for probabilistic reasoning.

Big data (2001—present)

Remarkable advances in computing power and the creation of the World Wide Web have
facilitated the creation of very large data sets—a phenomenon sometimes known as big data.
These data sets include trillions of words of text, billions of images, and billions of hours of speech
and video, as well as vast amounts of genomic data, vehicle tracking data, clickstream data, social
network data, and so on. This has led to the development of learning algorithms specially designed
to take advantage of very large data sets. Often, the vast majority of examples in such data sets are
unlabeled; The availability of big data and the shift towards machine learning helped Al recover
commercial attractiveness.

Deep learning (2011—present)

The term deep learning refers to machine learning using multiple layers of simple, adjustable
computing elements. Experiments were carried out with such networks as far back as the 1970s,
and in the form of convolutional neural networks they found some success in handwritten digit

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

recognition in the 1990s . It was not until 2011, however, that deep learning methods really took
off. This occurred first in speech recognition and then in visual object recognition. In the 2012
ImageNet competition, which required classifying images into one of a thousand categories
(armadillo, bookshelf, corkscrew, etc.), a deep learning system created in Geoffrey Hinton’s group
at the University of Toronto demonstrated a dramatic improvement over previous systems, which
were based largely on handcrafted features. Since then, deep learning systems have exceeded
human performance on some vision tasks

Deep learning relies heavily on powerful hardware. Whereas a standard computer CPU can do 10°
or 10%° operations per second. a deep learning algorithm running on specialized hardware (e.g.,
GPU, TPU, or FPGA) might consume between 10'*and 10!’ operations per second, mostly in the
form of highly parallelized matrix and vector operations. Of course, deep learning also depends on
the availability of large amounts of training data, and on a few algorithmic tricks

The State of the Art or The Applications of Al

ROBOTIC VEHICLES:

The history of robotic vehicles stretches back to radio-controlled cars of the 1920s, but the first
demonstrations of autonomous road driving without special guides occurred in the 1980s.
A driverless robotic car named STANLEY outfitted with cameras, radar, and laser rangefinders
to sense the environment and onboard software to command the steering, braking, and
acceleration.The following year CMU’s BOSS won the Urban Challenge, safely driving in traffic
through the streets of a closed Air Force base, obeying traffic rules and avoiding pedestrians and
other vehicles.

Speech recognition: A traveler calling United Airlines to book a flight can have the entire
conversation guided by an automated speech recognition and dialog management system.
Autonomous planning and scheduling: A hundred million miles from Earth, NASA’s Remote
Agent program became the first on-board autonomous planning program to control the scheduling
of operations for a spacecraft . REMOTE AGENT generated plans from high-level goals specified
from the ground and monitored the execution of those plans—detecting, diagnosing, and
recovering from problems as they occurred. Successor program MAPGEN plans the daily
operations for NASA’s Mars Exploration Rovers, and MEXAR2 did mission planning—both
logistics and science planning—for the European Space Agency’s Mars Express mission in 2008.
Game playing: IBM’s DEEP BLUE became the first computer program to defeat the world
champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in an exhibition
match.

Spam fighting: Each day, learning algorithms classify over a billion messages as spam, saving the
recipient from having to waste time deleting what, for many users, could comprise 80% or 90% of
all messages, if not classified away by algorithms. Because the spammers are continually updating
their tactics, it is difficult for a static programmed approach to keep up, and learning algorithms
work best

Logistics planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic
Analysis and Replanning Tool, DART to do automated logistics planning and scheduling for
transportation.

Robotics: The iRobot Corporation has sold over two million Roomba robotic vacuum cleaners for
home use. The company also deploys the more rugged PackBot to Irag and Afghanistan, where it
is used to handle hazardous materials, clear explosives, and identify the location of snipers.
Machine Translation: A computer program automatically translates one language to another.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

1.2Agents and Environments

An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators. This simple idea is illustrated in Figure

/Agent Sensors —as \

Percepts
]
=
<
—
=
‘) 3
. =
S
]
=
=
Actions

& Actuators / —

Figure :Agents interact with environments through sensors and actuators.

e A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract,
and so on for actuators.

e A robotic agent might have cameras and infrared range finders for sensors and various
motors for actuators.

e A software agent receives file contents, network packets, and human input
(keyboard/mouse/touchscreen/voice) as sensory inputs and acts on the environment by
writing files, sending network packets, and displaying information or generating sounds.

e The environment could be everything—the entire universe!

The term percept to refer to the content an agent’s sensors are perceiving. An agent’s percept
sequence is the complete history of everything the agent has ever perceived. An agent’s behavior
is described by the agent function that maps any given percept sequence to an action.

Internally, the agent function for an artificial agent will be implemented by an agent program. It
is important to keep these two ideas distinct. The agent function is an abstract mathematical
description; the agent program is a concrete implementation, running within some physical system.

Consider a simple example—the vacuum-cleaner world, which consists of a robotic vacuum-

cleaning agent in a world consisting of squares that can be either dirty or clean. Figure shows a
configuration with just two squares A and B .

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

The vacuum agent perceives which square it is in and whether there is dirt in the square. The
agent starts in square A . The available actions are to move to the right, move to the left,
suck up the dirt, or do nothing. One very simple agent function is the following: if the
current square is dirty, then suck; otherwise, move to the other square. A partial tabulation
of this agent function is shown in Figure

Percept sequence Action
(A, Clean] Right
[A, Dirty] Suck
(B, Clean] Left
(B, Dirty] Suck
[A, Clean], [A, Clean] Right
[A, Clean], [A, Dirty] Suck
(A, Clean|, [A, Clean], [A, Clean| Right
[A, Clean], [A, Clean], [A, Dirty] Suck

1.3 The Concept of Rationality(Good Behaviour)

e A rational agent is one that does the right thing.

e An agent’s behavior is evaluated by its consequences.

e When an agent is plunked down in an environment, it generates a sequence of actions
according to the percepts it receives.

e This sequence of actions causes the environment to go through a sequence of states. If the
sequence is desirable, then the agent has performed well. This notion of desirability is
captured by a performance measure that evaluates any given sequence of environment
states.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Rationality at any given time depends on four things:

e The performance measure that defines the criterion of success.

e The agent’s prior knowledge of the environment.

e The actions that the agent can perform.

e The agent’s percept sequence to date.

This leads to a definition of a rational agent:For each possible percept sequence, a rational agent
should select an action that is expected to maximize its performance measure, given the evidence
provided by the percept sequence and whatever built-in knowledge the agent has.

Omniscience, learning, and autonomy

e An omniscient agent knows the actual outcome of its actions and can act accordingly; but
omniscience is impossible in reality

e Rationality maximizes expected performance, while perfection maximizes actual
performance.

e Doing actions in order to modify future percepts— sometimes called information
gathering—is an important part of rationality

e A rational agent not only gathers information but also has to learn as much as possible
from what it perceives.

e The agent’s initial configuration could reflect some prior knowledge of the environment,
but as the agent gains experience this may be modified and augmented.

e There are extreme cases in which the environment is completely known a priori and
completely predictable. In such cases, the agent need not perceive or learn; it simply acts
correctly.

e When an agent relies on the prior knowledge of its designer rather than on its own percepts
and learning processes, the agent lacks autonomy.

e Arational agent should be autonomous—it should learn what it can compensate for partial
or incorrect prior knowledge.

e After sufficient experience of its environment, the behavior of a rational agent can become
effectively independent of its prior knowledge. Hence, the incorporation of learning allows
one to design a single rational agent that will succeed in a vast variety of environments.

1.4 The Nature of Environments

Task environments are essentially the “problems” to which rational agents are the “solutions.”
The nature of the task environment directly affects the appropriate design for the agent program.
Specifying the task environment

When designing an agent, the first step is to specify the task environment as fully as possible using
PEAS(Performance Measure Environment Actuator Sensor)

Example :PEAS description of the task environment for an automated taxi driver.
Performance Measure

Desirable qualities include getting to the correct destination; minimizing fuel consumption and
wear and tear; minimizing the trip time or cost; minimizing violations of traffic laws and
disturbances to other drivers; maximizing safety and passenger comfort; maximizing profits.
Environment

Any taxi driver must deal with a variety of roads, ranging from rural lanes and urban alleys to 12-
lane freeways. The roads contain other traffic, pedestrians, stray animals, road works, police cars,
puddles, and potholes.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

The actuators for an automated taxi include those available to a human driver: control over the
engine through the accelerator and control over steering and braking. In addition, it will need
output to a display screen or voice synthesizer to talk back to the passengers, and perhaps some
way to communicate with other vehicles, politely or otherwise.

The basic sensors for the taxi will include one or more video cameras and ultrasound sensors to
detect distances to other cars and obstacles.

Agent Type Performance Environment Actuators Sensors
Measure

Tax1 driver Safe, fast, Roads, other Steering, Cameras, radar,
legal, traffic, police, accelerator, speedometer, GPS, engine
comfortable pedestrians, brake, signal, sensors, accelerometer,
trip, maximize customers, horn, display. microphones, touchscreen
profits, weather speech
minimize
impact on
other road
users

Figure: PEAS description of the task environment for an automated taxi.

Agent Type

Medical
diagnosis system

Satellite image
analysis system

Part-picking
robot

Refinery
controller

Interactive
English tutor

Performance
Measure

Healthy patient,
reduced costs

Correct
categorization of
objects, terrain

Percentage of
parts in correct
bins

Purity, yield,
safety

Student’s score
on test

Environment

Patient. hospital,
staff

Orbiting satellite,
downlink,
weather

Conveyor belt
with parts; bins

Refinery, raw
materials,
operators

Set of students,
lesting agency

Actuators

Display of
questions, tests,
diagnoses,
treatments

Display of scene
categorization

Jointed arm and
hand

Valves, pumps,
heaters, stirrers.
displays

Display of
exercises,
feedback, speech

Sensors

Touchscreen/voice
entry of
symptoms and
findings

High-resolution
digital camera

Camera, tactile
and joint angle
Sensors

Temperature,
pressure, flow,
chemical sensors

Keyboard entry,
voice

Figure: Examples of agent types and their PEAS descriptions

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Properties of task environments(Types of environment)

())FULLY OBSERVABLE VS. PARTIALLY OBSERVABLE:
e Ifan agent’s sensors gives access to the complete state of the environment at each point in
time, then the task environment is fully observable.
e Fully observable environments are convenient because the agent need not maintain any
internal state to keep track of the world.
e An environment might be partially observable because of noisy and inaccurate sensors or
because parts of the state are simply missing from the sensor data
e For example, a vacuum agent with only a local dirt sensor cannot tell whether there is dirt
in other squares.
e |f the agent has no sensors at all then the environment is unobservable.
(i)SINGLE-AGENT VS. MULTIAGENT:
In a single agent environment there is well defined agent who takes the decision
For example an agent solving a crossword puzzle by itself is clearly in a single-agent environment,
In a multiagent agent environment a group of agents are involved in taking the decision
Example an agent playing chess is in a two agent environment.
Multiagents are of two types
e Competitive and
e Cooperative

(i DETERMINISTIC VS. NONDETERMINISTIC.

e If the next state of the environment is completely determined by the current state and the
action executed by the agent(s), then the environment is deterministic; otherwise, it is
nondeterministic. Taxi driving is clearly nondeterministic in this sense, because one can
never predict the behavior of traffic exactly;

e The vacuum world is deterministic, but variations can include nondeterministic elements
such as randomly appearing dirt and an unreliable suction mechanism.

e The word stochastic is used as a synonym for “nondeterministic,” a distinction between
the two terms; A model of the environment is stochastic if it explicitly deals with
probabilities (e.g., “there’s a 25% chance of rain tomorrow”) and “nondeterministic” if the
possibilities are listed without being quantified (e.g., “there’s a chance of rain tomorrow”).

(iv)EPISODIC VS. SEQUENTIAL.:

e Inan episodic task environment, the agent’s experience is divided into atomic episodes. In
each episode the agent receives a percept and then performs a single action.

e The next episode does not depend on the actions taken in previous episodes.

e Many classification tasks are episodic. For example, an agent that has to spot defective
parts on an assembly line bases each decision on the current part, regardless of previous
decisions; moreover, the current decision doesn’t affect whether the next part is defective.

e In sequential environments, on the other hand, the current decision could affect all future
decisions.

e Chess and taxi driving are sequential: in both cases, short-term actions can have long-term
consequences.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

e Episodic environments are much simpler than sequential environments because the agent
does not need to think ahead.

(V)STATIC VS. DYNAMIC:

e If the environment can change while an agent is deliberating, then the environment is
dynamic for that agent; otherwise, it is static.

e Static environments are easy to deal with because the agent need not keep looking at the
world while it is deciding on an action, nor need it worry about the passage of time.

e Dynamic environments, on the other hand, are continuously asking the agent what it wants
to do; if it hasn’t decided yet, that counts as deciding to do nothing. If the environment
itself does not change with the passage of time but the agent’s performance score does,
then the environment is semidynamic.

e Taxi driving is clearly dynamic: the other cars and the taxi itself keep moving while the
driving algorithm dithers about what to do next. Chess, when played with a clock, is
semidynamic. Crossword puzzles are static.

(Vi)DISCRETE VS. CONTINUOUS:

e A discrete environment has a finite number of distinct states over time. Each state has
associated percepts and actions on the agent. Eg: Chess has a discrete set of percepts and
actions.

e Ina continuous environment , the environment is not stable at any given point of time and
also it changes continuously. Eg: Taxi driving is a continuous-state and continuous-time
problem: the speed and location of the taxi and of the other vehicles sweep through a range
of continuous values

(vii)KNOWN VS. UNKNOWN:
e In a known environment, the outcomes (or outcome probabilities if the environment is
nondeterministic) for all actions are given. Obviously, if the environment is unknown, the
agent will have to learn how it works in order to make good decisions.

Task Environment ~ Observable Agents Deterministic Episodic Static Discrete
Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete
Poker Partially Multi Stochastic ~ Sequential ~ Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete
Taxi driving Partially Multi Stochastic ~ Sequential Dynamic Continuous
Medical diagnosis Partially ~ Single Stochastic Sequential Dynamic Continuous
Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous
Refinery controller Partially ~ Single Stochastic Sequential Dynamic Continuous
English tutor Partially Multi Stochastic ~ Sequential Dynamic Discrete

Figure: Examples of task environments and their characteristics.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

1.5 The Structure of Agents
The job of Al is to design an agent program that implements the agent function—the mapping
from percepts to actions.

Agent architecture isa program that runs on some sort of computing device with physical sensors
and actuators.
In general, the architecture makes the percepts from the sensors available to the program, runs the
program, and feeds the program’s action choices to the actuators as they are generated.

agent = architecture + program

Agent programs
e The agent programs all have the same skeleton: they take the current percept as input
from the sensors and return an action to the actuators.

e The difference between the agent program and the agent function is, the agent program
takes the current percept as input, and the agent function, which may depend on the entire
percept history.

e The agent program has no choice but has to take just the current percept as input because
nothing more is available from the environment; if the agent’s actions need to depend on
the entire percept sequence, the agent will have to remember the percepts.

e The agent programs are described using a simple pseudocode language
e For example, Figure shows a trivial agent program that keeps track of the percept
sequence and then uses it to index into a table of actions to decide what to do.

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty
table. a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action «+— LOOKUP(percepts, table)
return action

The four basic kinds of agent programs that embody the principles underlying almost all
intelligent systems:

Simple reflex agents;

Model-based reflex agents;

Goal-based agents; and

Utility-based agents.

Simple reflex agents
e The simplest kind of agent is the simple reflex agent. These agents select actions on the
basis of the current percept, ignoring the rest of the percept history.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

O

(Agent Sensors —as

'

What the world
is like now

JUQWIUOIIAUY

What action |
should do now

Actuators e

Figure: Schematic diagram of a simple reflex agent. Rectangles denote the current internal
state of the agent’s decision process, and ovals to represent the background information used
in the process.

(Condition-action rules D —

For example, the vacuum agent whose agent function is a simple reflex agent, because its decision
is based only on the current location and on whether that location contains dirt.

An agent program for this agent is shown in Figure .
function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure gives the structure of this general program in schematic form, showing how the condition—
action rules allow the agent to make the connection from percept to action.
function SIMPLE-REFLEX-AGENT(percept) returns an action

persistent: rules, a set of condition—action rules

state <~ INTERPRET-INPUT(percept)
rule +— RULE-MATCH(state. rules)
action < rule. ACTION

return action

The INTERPRET-INPUT function generates an abstracted description of the current state from
the percept, and the RULEMATCH function returns the first rule from the set of rules that matches
the given state description.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Simple reflex agents have the admirable property of being simple, but they turn out to be of limited
intelligence. The agent will work only if the correct decision can be made on the basis of only the
current percept—that is, only if the environment is fully observable.

Suppose that a simple reflex ,vacuum agent in which its location sensor got damaged and has only
a dirt sensor. Such an agent has just two possible percepts: [Dirty] and [Clean]. It can Suck in
response to [Dirty]; and there will not be any response to [Clean]. Moving Left fails (forever) if it
happens to start in square A, and moving Right fails (forever) if it happens to start in square B.

Model-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the part of
the world it can’t see now. That is, the agent should maintain some sort of internal state that
depends on the percept history and thereby reflects at least some of the unobserved aspects of the
current state.

Updating this internal state information requires two kinds of knowledge.

First, some information about how the world changes over time is needed, which can be divided
roughly into two parts: the effects of the agent’s actions and how the world evolves independently
of the agent. A knowledge about “how the world works”—is called a transition model of the
world.Second, some information about how the state of the world is reflected in the agent’s
percepts is also needed. This kind of knowledge is called a sensor model.Together, the transition
model and sensor model allow an agent to keep track of the state of the world—to the extent
possible given the limitations of the agent’s sensors. An agent that uses such models is called a
model-based agent.

Figure gives the structure of the model-based reflex agent with internal state, showing how the
current percept is combined with the old internal state to generate the updated description of the
current state, based on the agent’s model of how the world works.

/_ ’, ﬁﬂ"""‘-.., Sensors gp
N

(How the world evolves)—b— Wm;,:{he world
is like now

QWhaI my actions do

JUOWIUOIIAUT

- : What action [
(Condition-action rules >—> should do now
Agent Actuators j—L/

Figure A model-based reflex agent

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

transition_model, a description of how the next state depends on
the current state and action

sensor_model, a description of how the current world state is reflected
in the agent’s percepts

rules, a set of condition—action rules

action, the most recent action, initially none

state <— UPDATE-STATE(state, action, percept, transition_model, sensor_model)
rule +— RULE-MATCH(state, rules)

action < rule. ACTION

return action

A model-based reflex agent. keeps track of the current state of the world, using an internal model.
It then chooses an action in the same way as the reflex agent.

The interesting part is the function UPDATE-STATE, which is responsible for creating the new internal state
description

Goal-based agents

The current state of the environment is not always enough to decide what to do next. For example,
at a road junction, the taxi can turn left, turn right, or go straight on. The correct decision depends
on where the taxi is trying to get to. In other words, along with current state description, the agent
needs some sort of goal information that describes situations that are desirable—for example,
being at a particular destination.

The agent program can combine with the model-based reflex agent to choose actions that achieve
the goal.

Figure shows the goal-based agent’s structure.

f o ——
y S~ Sensors —=

-

"\
Cou e ™

What the world
< How the world evolves is like now

¥

CWhat my actions do Wt]]?tl](tigv;lgribcfnlfe

JUQWIUOIIA U]

Y
What action |
should do now

\ Agent Actuators

Y

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

A model-based, goal-based agent. It keeps track of the world state as well as a set of goals it is
trying to achieve, and chooses an action that will (eventually) lead to the achievement of its goals.
Sometimes goal-based action selection is straightforward—for example, when goal satisfaction
results immediately from a single action. Sometimes it will be more tricky—for example, when
the agent has to consider long sequences of twists and turns in order to find a way to achieve the
goal. Search and planning are the subfields of Al devoted to finding action sequences that achieve
the agent’s goals.

Although the goal-based agent appears less efficient, it is more flexible because the knowledge
that supports its decisions is represented explicitly and can be modified. For example, a goal-based
agent’s behavior can easily be changed to go to a different destination, simply by specifying that
destination as the goal. The reflex agent’s rules for when to turn and when to go straight will work
only for a single destination; they must all be replaced to go somewhere new.

Utility-based agents

Goals alone are not enough to generate high-quality behavior in most environments. For example,
many action sequences will get the taxi to its destination (thereby achieving the goal), but some
are quicker, safer, more reliable, or cheaper than others.

Figure A model-based, utility-based agent.

/_ ”’----h‘““‘- Seniurs M\

~
.

3

'\’\}hat the world

(How the world evolves is like now
(What my actions do Wi}%a[l SIED‘;ICI:IE[E’EI gke

- in such a state

What action I
should do now

Y
Agent Actuators
\)] f:)

JUOWUOIIAU

A model-based, utility-based agent. It uses a model of the world, along with a utility function that
measures its preferences among states of the world. Then it chooses the action that leads to the
best expected utility, where expected utility is computed by averaging over all possible outcome
states, weighted by the probability of the outcome.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

An agent’s utility function is essentially an internalization of the performance measure. Provided
that the internal utility function and the external performance measure are in agreement, an agent
that chooses actions to maximize its utility will be rational according to the external performance
measure.

In two cases utility-based agents are more better than goal based agents

First, when there are conflicting goals, only some of which can be achieved (for example, speed
and safety), the utility function specifies the appropriate tradeoff.

Second, when there are several goals that the agent can aim for, none of which can be achieved
with certainty, utility provides a way in which the likelihood of success can be weighed against
the importance of the goals.

A utility-based agent has to model and keep track of its environment, tasks that have involved a
great deal of research on perception, representation, reasoning, and learning. A model-free agent
can learn what action is best in a particular situation without ever learning exactly how that action
changes the environment.

Learning agents

Any type of agent (model-based, goal-based, utility-based, etc.) can be built as a learning agent
(or not).

Learning has another advantage it allows the agent to operate in initially unknown environments
and to become more competent than its initial knowledge

A learning agent can be divided into four conceptual components, as shown in Figure

Performance standard

. A

Critic e SCNSOTS

feedback

Tl

=)

changes S

Learning [™| Performance 3
element |eg—---—— element =
knowledge =

¢

=

=

learning
goals
Problem
generator

\A g ent Actuators TL/

The learning element, which is responsible for making improvements, and the performance
element, which is responsible for selecting external actions. The performance element is
considered to be the entire agent: it takes in percepts and decides on actions. The learning element

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

uses feedback from the critic on how the agent is doing and determines how the performance
element should be modified to do better in the future.

The design of the learning element depends very much on the design of the performance element.
The critic tells the learning element how well the agent is doing with respect to a fixed performance
standard. The critic is necessary because the percepts themselves provide no indication of the
agent’s success. The last component of the learning agent is the problem generator. It is
responsible for suggesting actions that will lead to new and informative experiences.

Learning in intelligent agents can be summarized as a process of modification of each component
of the agent to bring the components into closer agreement with the available feedback
information, thereby improving the overall performance of the agent.

Working of the components of agent programs

The three representations—atomic, factored, and structured.

In an atomic representation each state of the world is indivisible—it has no internal structure.
A factored representation splits up each state into a fixed set of variables or attributes,

each of which can have a value.

Many important areas of Al are based on factored representations, including constraint satisfaction
algorithms, propositional logic ,planning , Bayesian networks , and various machine learning
algorithms.

Figure provides schematic depictions of how those transitions might be represented.

mII....
OII....

(a) Atomic (b) Factored (¢) Structured

Structured representation: a state includes objects, each of which may have attributes of its own
as well as relationships to other objects. Structured representations underlie relational databases
and first-order logic, first-order probability models , and much of natural language understanding

Another axis for representation involves the mapping of concepts to locations in physical memory,
whether in a computer or in a brain. If there is a one-to-one mapping between concepts and memory
it is called localist representation. On the other hand, if the representation of a concept is spread
over many memory locations, and each memory location is employed as part of the representation

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

of multiple different concepts ,that is called a distributed representation. Distributed
representations are more robust against noise and information loss.

Problem Solving Agents

When the correct action to take is not immediately obvious, an agent may need to to plan ahead:
to consider a sequence of actions that form a path to a goal state. Such an agent is called a problem-
solving agent, and the computational process it undertakes is called search.

The agent can follow this four-phase problem-solving process:
GOAL FORMULATION: Goals organize behavior by limiting the objectives and hence the
actions to be considered.

PROBLEM FORMULATION: The agent devises a description of the states and actions
necessary to reach the goal—an abstract model of the relevant part of the world.

SEARCH: Before taking any action in the real world, the agent simulates sequences of actions in
its model, searching until it finds a sequence of actions that reaches the goal. Such a sequence is
called a solution. The agent might have to simulate multiple sequences that do not reach the goal,
but eventually it will find a solution (such as going from Arad to Sibiu to Fagaras to Bucharest),
or it will find that no solution is possible.

EXECUTION: The agent can now execute the actions in the solution, one at a time.

It is an important property that in a fully observable, deterministic, known environment, the
solution to any problem is a fixed sequence of actions. If the model is correct, then once the agent
has found a solution, it can ignore its percepts while it is executing the actions—because the
solution is guaranteed to lead to the goal. Control theorists call this an open-loop system: ignoring
the percepts breaks the loop between agent and environment. If there is a chance that the model is
incorrect, or the environment is nondeterministic, then the agent would be safer

using a closed-loop approach that monitors the percepts

Search problems and solutions

A search problem can be defined formally as follows:

A set of possible states that the environment can be in. This is the state space. The state space can
be represented as a graph in which the vertices are states and the directed edges between them are
actions. The initial state that the agent starts in. A set of one or more goal states. Sometimes there
is one goal state, sometimes there is a small set of alternative goal states, and sometimes the goal
is defined by a property that applies to many states.The actions available to the agent. Given a
state s ACTIONS(s) returns a finite set of actions that can be executed in s .

Example: ACTIONS(Arad) = {ToSibiu, ToTimisoara, ToZerind}.

A transition model, which describes what each action does. RESULT(s,a) returns the state that
results from doing action in state

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Example: RESULT(Arad, ToZerind) = Zerind.

An action cost function, denoted by ACTION-COST(s,a,s’) gives the numeric cost of applying
action a in state s to reach state s’. A problem-solving agent should use a cost function that reflects
its own performance measure;

for example, for route-finding agents, the cost of an action might be the length in miles , or it
might be the time it takes to complete the action.

A sequence of actions forms a path, and a solution is a path from the initial state to a goal state.
An optimal solution has the lowest path cost among all solutions.

Formulating problems

A model—an abstract mathematical description—and not the real thing. The process of removing
detail from a representation is called abstraction. A good problem formulation has the right level
of detail. The abstraction is valid if it can elaborate any abstract solution into a solution in the
more detailed world; The abstraction is useful if carrying out each of the actions in the solution is
easier than the original problem. The choice of a good abstraction thus involves removing as much
detail as possible while retaining validity and ensuring that the abstract actions are easy to carry
out.

Example Problems

The problem-solving approach has been applied to a vast array of task environments. A
standardized problem(toy problem) is intended to illustrate or exercise various problem solving
methods. It can be given a concise, exact description and hence is suitable as a benchmark for
researchers to compare the performance of algorithms.

Examples: Grid world problem ,8-Queens,8-puzzle,Water Jug Problem, Crypt arithmetic

A real-world problem, such as robot navigation, is one whose solutions people actually use, and
whose formulation is unique not standardized, for example, each robot has different sensors that
produce different data.

Examples: Route finding problem,Robot navigation, Touring problem, Travelling salesman

Standardized problem(Toy problem)

A grid world problem is a two-dimensional rectangular array of square cells in which agents can
move from cell to cell. Typically the agent can move to any obstacle-free adjacent cell—
horizontally or vertically and in some problems diagonally. Cells can contain objects, which the
agent can pick up, push, or otherwise act upon; a wall or other strong obstacle in a cell prevents an
agent from moving into that cell.

The vacuum world can be formulated as a grid world problem as follows:

STATES: A state of the world says which objects are in which cells. For the vacuum world, the
objects are the agent and any dirt. In the simple two-cell version, the agent can be in either of the
two cells, and each call can either contain dirt or not, so there are 2.2.2=8states . In general, a
vacuum environment with n cells has n. 2" states.

INITIAL STATE: Any state can be designated as the initial state.

ACTIONS: In the two-cell world three actions defined are: Suck, move Left, and move Right. In
a two-dimensional multi-cell world more movement actions are needed such as Upward and

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Downward, giving the four absolute movement actions defined relative to the viewpoint of the
agent

For example, Forward, Backward, TurnRight, and TurnLeft.

Figure :The state-space graph for the two-cell vacuum world. There are 8 states and three
actions for each state: Left ,Right,Suc

(A T 2

S S

LCA% = gag C:_;a) N ADR

O
S S

TRANSITION MODEL: Suck removes any dirt from the agent’s cell; Forward moves the agent
ahead one cell in the direction it is facing, unless it hits a wall, in which case the action has no
effect. Backward moves the agent in the opposite direction, while TurnRight and TurnLeft change
the direction it is facing by 90°
GOAL STATES: The states in which every cell is clean.
ACTION COST: Each action costs 1.
Another type of grid world is the sokoban puzzle, in which the agent’s goal is to push a number
of boxes, scattered about the grid, to designated storage locations.
In a sliding-tile puzzle, a number of tiles (sometimes called blocks or pieces) are arranged in a
grid with one or more blank spaces so that some of the tiles can slide into the blank space. the best-
known variant is the 8- puzzle , which consists of a grid with eight numbered tiles and one blank
space, and the 15-puzzle on a grid. The object is to reach a specified goal state, such as the one
shown on the right of the figure.

Start State Goal State

A typical instance of the 8-puzzle.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

The standard formulation of the 8 puzzle is as follows:

STATES: A state description specifies the location of each of the tiles.
INITIAL STATE: Any state can be designated as the initial state
ACTIONS: While in the physical world it is a tile that slides, the simplest way of describing an
action is to think of the blank space moving Left, Right, Up, or Down. If the blank is at an edge or
corner then not all actions will be applicable.

TRANSITION MODEL: Maps a state and action to a resulting state; for example, if the action
is apply Left to the start state in Figure, the resulting state has 5 and the blank switched.

GOAL STATE: Although any state could be the goal, typically specify a state with the numbers
in order.

ACTION COST: Each action costs 1.

One standardized problem devised by Donald Knuth illustrates how infinite state spaces can arise.
Knuth conjectured that starting with the number 4, a sequence of square root, floor, and factorial
operations can reach any desired positive integer

For example, 5 can be reached from 4 as follows:

A=

The problem definition is simple:

STATES: Positive real numbers.

INITIAL STATE: 4.

ACTIONS: Apply square root, floor, or factorial operation (factorial for integers only).
TRANSITION MODEL.: As given by the mathematical definitions of the operations.

GOAL STATE: The desired positive integer.

ACTION COST: Each action costs 1.

The state space for this problem is infinite: for any integer greater than 2 the factorial operator will
always yield a larger integer. The problem is interesting because it explores very large numbers.
Infinite state spaces arise frequently in tasks involving the generation of mathematical expressions,
circuits, proofs, programs, and other recursively defined objects.

Real-world problems

Consider the route-finding problem defined in terms of specified locations and transitions along
edges between them. Route-finding algorithms are used in a variety of applications. Some, such
as Web sites and in-car systems that provide driving directions, are relatively straightforward
extensions of the Romania example. Others, such as routing video streams in computer networks,
military operations planning, and airline travel-planning systems, involve much more complex
specifications.

Consider the airline travel problems that must be solved by a travel-planning Web site:
STATES: Each state obviously includes a location (e.g., an airport) and the current time.
Furthermore, because the cost of an action (a flight segment) may depend on previous segments,
their fare bases, and their status as domestic or international, the state must record extra
information about these “historical” aspects.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

INITIAL STATE: The user’s home airport.
ACTIONS: Take any flight from the current location, in any seat class, leaving after the current
time, leaving enough time for within-airport transfer if needed.

TRANSITION MODEL: The state resulting from taking a flight will have the flight’s destination
as the new location and the flight’s arrival time as the new time.

GOAL STATE: A destination city. Sometimes the goal can be more complex, such as “arrive at
the destination on a nonstop flight.”

ACTION COST: A combination of monetary cost, waiting time, flight time, customs and
immigration procedures, seat quality, time of day, type of airplane, frequent-flyer reward points,
and so on.

Touring problems describe a set of locations that must be visited, rather than a single goal
destination. The traveling salesperson problem (TSP) is a touring problem in which every city
on a map must be visited. The aim is to find a tour with cost < C (or in the optimization version,
to find a tour with the lowest cost possible). An enormous amount of effort has been expended to
improve the capabilities of TSP algorithms. The algorithms can also be extended to handle fleets
of vehicles. In addition to planning trips, search algorithms have been used for tasks such as
planning the movements of automatic circuit board drills and of stocking machines on shop floors.

A VLSI layout problem requires positioning millions of components and connections on a chip
to minimize area, minimize circuit delays, minimize stray capacitances, and maximize
manufacturing yield. The layout problem comes after the logical design phase and is usually split
into two parts: cell layout and channel routing. In cell layout, the primitive components of the
circuit are grouped into cells, each of which performs some recognized function. Each cell has a
fixed footprint (size and shape) and requires a certain number of connections to each of the other
cells. The aim is to place the cells on the chip so that they do not overlap and so that there is room
for the connecting wires to be placed between the cells. Channel routing finds a specific route for
each wire through the gaps between the cells. These search problems are extremely complex, but
definitely worth solving.

Robot navigation is a generalization of the route-finding problem described earlier. Rather than
following distinct paths (such as the roads in Romania), a robot can roam around, in effect making
its own paths. For a circular robot moving on a flat surface, the space is essentially two-
dimensional. When the robot has arms and legs that must also be controlled, the search space
becomes many-dimensional—one dimension for each joint angle. Advanced techniques are
required just to make the essentially continuous search space finite . In addition to the complexity
of the problem, real robots must also deal with errors in their sensor readings and motor controls,
with partial observability, and with other agents that might alter the environment.

Automatic assembly sequencing of complex objects (such as electric motors) by a robot has been
standard industry practice since the 1970s. Algorithms first find a feasible assembly sequence and
then work to optimize the process. Minimizing the amount of manual human labor on the assembly
line can produce significant savings in time and cost. In assembly problems, the aim is to find an
order in which to assemble the parts of some object. If the wrong order is chosen, there will be no
way to add some part later in the sequence without undoing some of the work already done.
Checking an action in the sequence for feasibility is a difficult geometrical search problem closely

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

related to robot navigation. Thus, the generation of legal actions is the expensive part of assembly
sequencing. Any practical algorithm must avoid exploring all but a tiny fraction of the state space.
One important assembly problem is protein design, in which the goal is to find a sequence of
amino acids that will fold into a three-dimensional protein with the right properties to cure some
disease.

Search Algorithms

A search algorithm takes a search problem as input and returns a solution, or an indication of
failure. Each node in the search tree corresponds to a state in the state space and the edges in the
search tree correspond to actions. The root of the tree corresponds to the initial state of the problem

It is important to understand the distinction between the state space and the search tree. The state
space describes the (possibly infinite) set of states in the world, and the actions that allow
transitions from one state to another. The search tree describes paths between these states, reaching
towards the goal. The search tree may have multiple paths to any given state, but each node in the
tree has a unique path back to the root .

Oradea

Arad

Fagaras

18 Vaslui

Rimnicu Vilcea

Timisoara

142
111

Pitesti

Lugoj

70
Hirsova

Mehadia Urziceni

75 86

Drobeta

Bucharest

90

Craiova Giurgiu Eforie

Figure :A simplified road map of a part of Romania with road distance in miles

Figure shows the first few steps in finding a path from Arad to Bucharest. The root node of the
search tree is at the initial state, Arad. This node can be expanded, by considering the available
ACTIONS for that state, using the RESULT function to see where those actions lead to, and
generating a new node (called a child node or successor node) for each of the resulting states.
Each child node has Arad as its parent node.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

S
™ ¢ Timisoara) ¢ Zerind
B e

- # .
. ., ‘

- - e m——— e - e —
_Arad > < _Lugoj » < _Arad (_Oradea »
T e

P el

¢ Arad » (_Fagaras » (_ Oradea) «
s i T T smlT

- . . - S — - e mmmm——
{__Oradea » < RimmcoVilcea) _ Arad < Lugoj 0 __ Arad » ¢_Oradea >
_— - — = - - R = S - - - -

o iy P

Pa AT e o

1 S - . - s - 1 S - 1 ~u - a - i

.
h N P A -

¢ Arad 0 Tmpoy D ¢ Arad) ¢ Oradea
serslT B - e

. iy ey
[PN

Figure shows the three partial search trees for finding a route from Arad to Bucharest. Nodes that
have been expanded ; nodes on the frontier(the set of all leaf nodes available for expansion)have
been generated

The set of states corresponding to these two types of nodes are said to have been reached. Nodes
that could be generated next are shown in faint dashed lines. In the bottom tree there is a cycle
from Arad to Sibiu to Arad; that can’t be an optimal path, so search should not continue from there.

Figure below shows the sequence of search trees generated by a graph search on the Romania

problem of Figure.

At each stage, every node on the frontier is expanded resulting in a state that has not been already
reached. Notice that at the third stage, the topmost city (Oradea) has two successors, both of which
have already been reached by other paths, so no paths are extended from Oradea.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Note that the frontier separates two regions of the state-space graph: an interior region where
every state has been expanded, and an exterior region of states that have not yet been reached.
This property is illustrated in Figure .

(a) (b) (©)

The separation property of graph search, illustrated on a rectangular-grid problem. The frontier
(green) separates the interior (lavender) from the exterior (faint dashed). The frontier is the set of
nodes (and corresponding states) that have been reached but not yet expanded; the interior is the
set of nodes (and corresponding states) that have been expanded; and the exterior is the set of states
that have not been reached. In (a), just the root has been expanded. In (b), the top frontier node is
expanded. In (c), the remaining successors of the root are expanded in clockwise order.

Best-first search
A very general approach is called best-first search, in which a node n is chosen, with minimum
value of some evaluation function f(n), Figure shows the algorithm.

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node +— NODE(STATE=problem.INITIAL)
frontier < a priority queue ordered by f. with node as an element
reached +— a lookup table, with one entry with key problem.INITIAL and value node
while not [S-EMPTY(frontier) do
node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
for each child in EXPAND(problem. node) do
5 +— child .STATE
if s is not in reached or child PATH-COST < reached|s].PATH-COST then
reached|s]| + child
add child to frontier
return failure

function EXPAND(problem, node) yields nodes
5 <+ node.STATE
for each action in problem . ACTIONS(s) do
s’ + problem.RESULT(s. action)
cost +— node. PATH-COST + problem.ACTION-COST(s, action, s')
yield NODE(STATE=s’, PARENT=node. ACTION=action, PATH-COST=cost)

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

On each iteration a node on the frontier with minimum value is chosen , return it if its state is a
goal state, and otherwise apply EXPAND to generate child nodes. Each child node is added to the
frontier if it has not been reached before, or is re-added if it is now being reached with a path that
has a lower path cost than any previous path. The algorithm returns either an indication of failure,
or a node that represents a path to a goal.

Search data structures

Search algorithms require a data structure to keep track of the search tree. A node in the tree is
represented by a data structure with four components:

node.STATE: the state to which the node corresponds;

node.PARENT: the node in the tree that generated this node;

node.ACTION: the action that was applied to the parent’s state to generate this node;
node.PATH-COST: the total cost of the path from the initial state to this node.

The operations on a frontier are:

IS-EMPTY (frontier) returns true only if there are no nodes in the frontier.
POP(frontier) removes the top node from the frontier and returns it.
TOP(frontier) returns (but does not remove) the top node of the frontier.
ADD(node, frontier) inserts node into its proper place in the queue.

Three kinds of queues are used in search algorithms:
A priority queue first pops the node with the minimum cost according to some evaluation
function, f. It is used in best-first search.

A FIFO queue or first-in-first-out queue first pops the node that was added to the queue first; it
is used in breadth-first search.

A LIFO queue or last-in-first-out queue (also known as a stack) pops first the most recently added
node,it is used in depth-first search.

The reached states can be stored as a lookup table (e.g. a hash table) where each key is a state and
each value is the node for that state.

Redundant paths

A repeated state in the search tree, generated a cycle (also known as a loopy path). A cycle is a
special case of a redundant path.

Measuring problem-solving performance
An algorithm’s performance can be evaluated in four ways:

COMPLETENESS: Is the algorithm guaranteed to find a solution when there is one, and to
correctly report failure when there is not?
COST OPTIMALITY: Does it find a solution with the lowest path cost of all solutions?

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

TIME COMPLEXITY: How long does it take to find a solution? This can be measured in
seconds, or more abstractly by the number of states and actions considered.

SPACE COMPLEXITY: How much memory is needed to perform the search?

To be complete, a search algorithm must be systematic in the way it explores an infinite state
space, making sure it can eventually reach any state that is connected to the initial state.

Time and space complexity are considered with respect to some measure of the problem difficulty.
In theoretical computer science, the typical measure is the size of the state-space graph |V|+|E|,
where |V| is the number of vertices (state nodes) of the graph and |E| is the number of edges (distinct
state/action pairs).

But in many Al problems, the graph is represented only implicitly by the initial state, actions, and
transition model. For an implicit state space, complexity can be measured in terms of the d,depth
or number of actions in an optimal solution; m,the maximum number of actions in any path; and
b, the branching factor or number of successors of a node that need to be considered.

Uninformed Search Strategies(Blind Search)

The term blind means that the strategies have no additional information about states beyond that
is provided in the problem definition. All they can do is generate successors and distinguish a goal
state from a non-goal state. All search strategies are distinguished by the order in which nodes are
expanded. Strategies that know whether one non-goal state is “more promising” than another are
called informed search or heuristic search strategies

There are five uninformed search strategies as given below.
0 Breadth-first search

0 Uniform-cost search

0 Depth-first search

0 Depth-limited search

o Iterative deepening search

BREADTH FIRST SEARCH

e When all actions have the same cost, an appropriate strategy is breadth-first search, in
which the root node is expanded first, then all the successors of the root node are expanded
next, then their successors, and so on.

e This can be implemented as a call to BEST-FIRST-SEARCH where the evaluation
function f(n) is the depth of the node—that is, the number of actions it takes to reach the
node.

e A first-in-first-out queue is used, this gives the correct order of nodes: new nodes (which
are always deeper than their parents) go to the back of the queue, and old nodes, which are
shallower than the new nodes, get expanded first.

o A reached state can be a set of states rather than a mapping from states to nodes, because
once a state is reached, a better path to the state can never be found.

e Inaddition an early goal test can be done to check whether a node is a solution as soon as
it is generated, rather than the late goal test that best-first search uses, waiting until a node
is popped off the queue.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Figure shows the progress of a breadth-first search on a binary tree,

4 @

Breadth-first search on a simple binary tree. At each stage, the node to be expanded next is
indicated by the triangular marker.

Figure : Algorithm

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node «+— NODE(problem.INITIAL)
if problem.1S-GOAL(node. STATE) then return node
frontier < a FIFO queue, with node as an element
reached < { problem.INITIAL}
while not IS-EMPTY(frontier) do
node < POP(frontier)
for each child in EXPAND(problem, node) do
5 ¢ child .STATE
if problem .1s-GOAL(s) then return child
if s is not in reuched then
add s to reached
add chald to frontier
return failure

function UNIFORM-COST-SEARCH(problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, PATH-COST)

Breadth-first search always finds a solution with a minimal number of actions, because when it is
generating nodes at depth d it has already generated all the nodes at depth d-1. That means it is
cost-optimal for problems where all actions have the same cost, but not for problems that don’t
have that property.

In terms of time and space, consider searching a uniform tree where every state has b successors.
The root of the search tree generates b nodes, each of which generates b more nodes, for a total b?
of at the second level. Each of these generates b more nodes, yielding b nodes at the third level,
and so on. Now suppose that the solution is at depth d Then the total number of nodes generated
is

1+b+Db?+Db%+-+bd=0(bY)

All the nodes remain in memory, so both time and space complexity are O(b9).

Dijkstra’s algorithm or uniform-cost search

When actions have different costs, an obvious choice is to use best-first search where the
evaluation function is the cost of the path from the root to the current node. This is called Dijkstra’s

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

algorithm by the theoretical computer science community, and uniform-cost search by the Al
community.

The idea is that while breadth-first search spreads out in waves of uniform depth—first depth 1,
then depth 2, and so on—uniform-cost search spreads out in waves of uniform path-cost. The
algorithm can be implemented as a call to BEST FIRSTSEARCH with PATH-COST as the
evaluation function.

Consider the example , where the problem is to get from Sibiu to Bucharest. The successors of
Sibiu are Rimnicu Vilcea and Fagaras, with costs 80 and 99, respectively. The least-cost node,
Rimnicu Vilcea, is expanded next, adding Pitesti with cost 80+97=177. The least cost node is now
Fagaras, so it is expanded, adding Bucharest with cost 99 + 211 = 310.Bucharest is the goal, but
the algorithm tests for goals only when it expands a node, not when it generates a node, so it has
not yet detected that this is a path to the goal.

Sibiu 99 Fagaras

Rimnicu Vilcea

Pitesti

Bucharest

The algorithm continues on, choosing Pitesti for expansion next and adding a second path to
Bucharest with cost 80 + 97 + 101 = 278.1t has a lower cost, so it replaces the previous path in
reached and is added to the frontier. It turns out this node now has the lowest cost, so it is
considered next, found to be a goal, and returned. Note that if we had checked for a goal upon
generating a node rather than when expanding the lowest-cost node, then we would have returned
a higher-cost path (the one through Fagaras).

The complexity of uniform-cost search is characterized in terms of C*, the cost of the optimal
solution, and a lower bound €, on the cost of each action, with €>0 Then the algorithm’s worst-
case time and space complexity O(b*1¢+) is which can be much greater than b This is because
uniform-cost search can explore large trees of actions with low costs before exploring paths

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

involving a high-cost and perhaps useful action. When all action costs are equal b*1¢+ is just
b%*! and uniform-cost search is similar to breadth-first search.

Uniform-cost search is complete and is cost-optimal, because the first solution it finds will have a
cost that is at least as low as the cost of any other node in the frontier. Uniform-cost search
considers all paths systematically in order of increasing cost, never getting caught going down a
single infinite path (assuming that all action costs are > €>0).

Depth-first search and the problem of memory

Depth-first search always expands the deepest node in the frontier first. It could be implemented
as a call to BEST-FIRST-SEARCH where the evaluation function is the negative of the depth.
However, it is usually implemented not as a graph search but as a tree-like search that does not
keep a table of reached states. The progress of the search is illustrated in Figure ;

LM N O L) M N O

Search proceeds immediately to the deepest level of the search tree, where the nodes have no
successors. The search then “backs up” to the next deepest node that still has unexpanded
successors. Depth-first search is not cost-optimalj; it returns the first solution it finds, even if it is
not cheapest.

For finite state spaces that are trees it is efficient and complete; for acyclic state spaces it may end
up expanding the same state many times via different paths, but will (eventually) systematically
explore the entire space.

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

In cyclic state spaces it can get stuck in an infinite loop; therefore some implementations of depth-
first search check each new node for cycles. Finally, in infinite state spaces, depth-first search is
not systematic: it can get stuck going down an infinite path, even if there are no cycles. Thus,
depth-first search is incomplete.

For a finite tree-shaped state-space , a depth-first tree-like search takes time proportional to the
number of states, and has memory complexity of only O(bm), where b is the branching factor
and m is the maximum depth of the tree.

A variant of depth-first search called backtracking search uses even less memory. In backtracking,
only one successor is generated at a time rather than all successors; each partially expanded node
remembers which successor to generate next. In addition, successors are generated by modifying
the current state description directly rather than allocating memory for a brand-new state. This
reduces the memory requirements to just one state description and a path of O(m)actions; a
significant savings over O(bm) states for depth-first search. With backtracking there is an option
of maintaining an efficient set data structure for the states on the current path, allowing to check
for a cyclic path in O(1) time rather than O(m). Backtracking is critical to the success of many
problems with large state descriptions, such as robotic assembly.

Depth-limited and iterative deepening search

To keep depth-first search from wandering down an infinite path, depth-limited search can be
used, a version of depth-first search in which a depth limit I is provided , and treat all nodes at
depth | as if they had no successors . The time complexity is O(b') and the space complexity is
O(bl) .Unfortunately, if a poor choice is made for I, the algorithm will fail to reach the solution,
making it incomplete again.

Algorithm:Iterative deepening and depth-limited tree-like search.
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure
for depth =0 to oo do
result «— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

function DEPTH-LIMITED-SEARCH(problem. () returns a node or failure or cutoff
frontier <—a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result + failure
while not IS-EMPTY(frontier) do
node + POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
if DEPTH(node) > (then
resull +— cutoff
else if not Is-CYCLE(node) do
for each child in EXPAND(problem, node) do
add child to frontier
return result

Iterative deepening repeatedly applies depth limited search with increasing limits. It returns one of
three different types of values: either a solution node; or failure, when it has exhausted all nodes
and proved there is no solution at any depth; or cutoff, to mean there might be a solution at a deeper
depth than I. This is a tree-like search algorithm that does not keep track of reached states, and thus

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

uses much less memory than best-first search, but runs the risk of visiting the same state multiple
times on different paths. Also, if the IS-CYCLE check does not check all cycles, then the algorithm
may get caught in a loop.

Iterative deepening search solves the problem of picking a good value for I by trying all values:
first 0, then 1, then 2, and so on—until either a solution is found, or the depth limited search returns
the failure value rather than the cutoff value . Iterative deepening combines many of the benefits
of depth-first and breadth-first search. Like depth-first search, its memory requirements are
modest:O(bd) when there is a solution, or O(bm) on finite state spaces with no solution. Like
breadth-first search, iterative deepening is optimal for problems where all actions have the same
cost, and is complete on finite acyclic state spaces, or on any finite state space when we check
nodes for cycles all the way up the path.

The time complexity is O(b%)when there is a solution, or O(b™)when there is none. Each iteration
of iterative deepening search generates a new level, in the same way that breadthfirst search does,
but breadth-first does this by storing all nodes in memory, while iterativedeepening does it by
repeating the previous levels, thereby saving memory at the cost of more time.

Figure shows four iterations of iterative-deepening search on a binary search tree, where the
solution is found on the fourth iteration.

limit: 0 >®
limit: 1 >® @ @
B & ® © PO
limit; 2 >@® @ @ @
B c ®, © (B) © (B) ©
D E F ¢ D E F ¢ ©) ©) F G (E) 3 G
))
© ©, Q
F G ® © ©
limit: 3 >® @ @
B c ®) © (B) ©
D E F G D E F G (D) (£) E G G
H (1) {J) K L) M N 00 (H T (30K L M N (o p@ @ KL M (N) (o
@
®] ©
©)) G
I Ky (L) M) N} (O
@
Q
F G ® ©)

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

Iterative deepening search may seem wasteful because states near the top of the search tree are re-
generated multiple times. But for many state spaces, most of the nodes are in the bottom level, so
it does not matter much that the upper levels are repeated. In an iterative deepening search, the
nodes on the bottom level (depth d) are generated once, those on the next-to-bottom level are
generated twice, and so on, up to the children of the root, which are generated d times. So the total
number of nodes generated in the worst case is N(IDS) = (d)b* + (d — 1)b? + (d — 2)b® ...+ b",
which gives a time complexity of O(b%)—asymptotically the same as breadth-first search.

For example, if b=10 and d=5 the numbers are

N(IDS) =50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

N(BFS) =10 + 100 + 1,000 + 10,000 + 100,000 = 111,110.

In general, iterative deepening is the preferred uninformed search method when the search state
space is larger than can fit in memory and the depth of the solution is not known.

Bidirectional search

An alternative approach called bidirectional search simultaneously searches forward from the
initial state and backwards from the goal state(s), hoping that the two searches will meet. For this
to work, two frontiers and two tables of reached states, and reason backwards is needed. If state
s’ isasuccessor of s in the forward direction, then s is a successor of s’ in the backward direction.
Thus when the two frontiers collide there is a solution.

The general best-first bidirectional search algorithm is shown in Figure

function BIBF-SEARCH(problem . fr. problemp. fp) returns a solution node, or failure
nodep < NODE(problem ;. INITIAL) / / Node for a start state
node g +— NODE(problem g.INITIAL) // Node for a goal state
frontier p +—a priority queue ordered by fr. with noder as an element
frontier p < a priority queue ordered by fp, with node g as an element
reached < a lookup table, with one key nodep.STATE and value nodep
reached g < a lookup table, with one key node 5. STATE and value nodep
solution + fuilure
while not TERMINATED(solution, frontier p, frontier g) do
if fr(ToP(frontier)) < fp(TOP(frontierg)) then
solution 4 PROCEED(F', problemp frontierp. reachedp. reached g, solution)
else solution < PROCEED(B, problem g, frontier g, reached g. reached g, solution)
return solution

function PROCEED(dir, problem, frontier, reached, reacheds, solution) returns a solution
// Expand node on frontier; check against the other frontier in reached.
// The variable “dir” is the direction: either F for forward or B for backward.
node < POP(frontier)
for each child in EXPAND(problem, node) do
s 4— chald . STATE
if s notin reached or PATH-COST(child) < PATH-COST(reached[s]) then
reached|s] < chald
add child to frontier
if s is in reachedy then
solutions < JOIN-NODES(dir, child, reacheds[s]))
if PATH-COST(solutions) < PATH-COST(solution) then
solution + solutions
return solution

AD8402-ARTIFICIAL INTELLIGENCE-I

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATASCIENCE

There are many different versions of bidirectional search, just as there are many different
unidirectional search algorithms. Here bidirectional best-first search is considered. Although there
are two separate frontiers, the node to be expanded next is always one with a minimum value of
the evaluation function, across either frontier. When the evaluation function is the path cost,
bidirectional uniform-cost search is got, and if the cost of the optimal path is C* then no node
with cost >C*/2 will be expanded. This can result in a considerable speedup.

Bidirectional best-first search keeps two frontiers and two tables of reached states. When a path in
one frontier reaches a state that was also reached in the other half of the search, the two paths are
joined (by the function JOIN-NODES) to form a solution. The first solution got is not guaranteed
to be the best; the function TERMINATED determines when to stop looking for new solutions.

Comparing uninformed search algorithms

Citiasion Bre:adth- Uniform- De_pth- erth- lteratiYe Bidireglional
First Cost First Limited Deepening (if applicable)
Complete? Yes' Yes'? No No Yes! Yes'#
Optimal cost? Yes? Yes No No Yes? Yes3#
Time ow?) oBtC/dy o™ obY o(b?) 0(h4/?)
Space o) om'tIC/dy obm) O(be) O(bd) O(b4/?)

Evaluation of search algorithms. b is the branching factor; m is the maximum depth of the search tree; d is
the depth of the shallowest solution, or is m when there is no solution; £ is the depth limit. Superscript
caveats are as follows: ! complete if b is finite, and the state space either has a solution or is finite. 2
complete if all action costs are > & > 0; * cost-optimal if action costs are all identical; * if both directions

are breadth-first or uniform-cost.

AD8402-ARTIFICIAL INTELLIGENCE-I

