

WEBSITE: www.eduengineering.in

 Best website for Anna University Affiliated College Students
 Regular Updates for all Semesters
 All Department Notes AVAILABLE
 All Lab Manuals AVAILABLE
 Handwritten Notes AVAILABLE
 Printed Notes AVAILABLE
 Past Year Question Papers AVAILABLE
 Subject wise Question Banks AVAILABLE
 Important Questions for Semesters AVAILABLE
 Various Author Books AVAILABLE

CONNECT WITH US

TELEGRAM: @eduengineering

http://www.eduengineering.in/
https://telegram.me/eduengineering

 AL3391 ARTIFICIAL INTELLIGENCE

UNIT V PROBABILISTIC REASONING

Acting under uncertainty – Bayesian inference – naïve Bayes models. Probabilistic reasoning –

Bayesian networks – exact inference in BN – approximate inference in BN – causal networks.

1. Acting under uncertainty

Uncertainty:

Till now, we have learned knowledge representation using first-order logic and propositional

logic with certainty, which means we were sure about the predicates. With this knowledge

representation, we might write A→B, which means if A is true then B is true, but consider a

situation where we are not sure about whether A is true or not then we cannot express this

statement, this situation is called uncertainty.

So to represent uncertain knowledge, where we are not sure about the predicates, we need

uncertain reasoning or probabilistic reasoning.

Causes of uncertainty:

Following are some leading causes of uncertainty to occur in the real world.

1. Information occurred from unreliable sources.

2. Experimental Errors

3. Equipment fault

4. Temperature variation

5. Climate change.

2. Bayesian inference

Bayes' theorem in Artificial intelligence

Bayes' theorem:

Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian reasoning, which determines the probability of

an event with uncertain knowledge.

In probability theory, it relates the conditional probability and marginal probabilities of two random events.

Bayes' theorem was named after the British mathematician Thomas Bayes. The Bayesian inference is an application

of Bayes' theorem, which is fundamental to Bayesian statistics.

It is a way to calculate the value of P(B|A) with the knowledge of P(A|B).

TELEGRAM: @eduengineering

Bayes' theorem allows updating the probability prediction of an event by observing new information of the real world.

Example: If cancer corresponds to one's age then by using Bayes' theorem, we can determine the probability of

cancer more accurately with the help of age.

Bayes' theorem can be derived using product rule and conditional probability of event A with known event B:

As from product rule we can write:

P(A ⋀ B)= P(A|B) P(B) or

Similarly, the probability of event B with known event A:

P(A ⋀ B)= P(B|A) P(A)

Equating right hand side of both the equations, we will get:

The above equation (a) is called as Bayes' rule or Bayes' theorem. This equation is basic of most modern AI systems

for probabilistic inference.

It shows the simple relationship between joint and conditional probabilities. Here,

P(A|B) is known as posterior, which we need to calculate, and it will be read as Probability of hypothesis A when we

have occurred an evidence B.

P(B|A) is called the likelihood, in which we consider that hypothesis is true, then we calculate the probability of

evidence.

P(A) is called the prior probability, probability of hypothesis before considering the evidence

P(B) is called marginal probability, pure probability of an evidence.

In the equation (a), in general, we can write P (B) = P(A)*P(B|Ai), hence the Bayes' rule can be written as:

Where A1, A2, A3,........, An is a set of mutually exclusive and exhaustive events.

Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A) in terms of P(A|B), P(B), and P(A). This is very useful in cases

where we have a good probability of these three terms and want to determine the fourth one. Suppose we want to

perceive the effect of some unknown cause, and want to compute that cause, then the Bayes' rule becomes:

TELEGRAM: @eduengineering

Example-1:

Question: what is the probability that a patient has diseases meningitis with a stiff neck?

Given Data:

A doctor is aware that disease meningitis causes a patient to have a stiff neck, and it occurs 80% of the time. He is

also aware of some more facts, which are given as follows:

o The Known probability that a patient has meningitis disease is 1/30,000.

o The Known probability that a patient has a stiff neck is 2%.

Let a be the proposition that patient has stiff neck and b be the proposition that patient has meningitis. , so we can

calculate the following as:

P(a|b) = 0.8

P(b) = 1/30000

P(a)= .02

Hence, we can assume that 1 patient out of 750 patients has meningitis disease with a stiff neck.

Example-2:

Question: From a standard deck of playing cards, a single card is drawn. The probability that the card is king is

4/52, then calculate posterior probability P(King|Face), which means the drawn face card is a king card.

Solution:

P(king): probability that the card is King= 4/52= 1/13

P(face): probability that a card is a face card= 3/13

P(Face|King): probability of face card when we assume it is a king = 1

Putting all values in equation (i) we will get:

TELEGRAM: @eduengineering

Application of Bayes' theorem in Artificial intelligence:

Following are some applications of Bayes' theorem:

o It is used to calculate the next step of the robot when the already executed step is given.

o Bayes' theorem is helpful in weather forecasting.

o It can solve the Monty Hall problem.

3. Probabilistic reasoning

Probabilistic reasoning:

Probabilistic reasoning is a way of knowledge representation where we apply the concept of probability to indicate

the uncertainty in knowledge. In probabilistic reasoning, we combine probability theory with logic to handle the

uncertainty.

We use probability in probabilistic reasoning because it provides a way to handle the uncertainty that is the result of

someone's laziness and ignorance.

In the real world, there are lots of scenarios, where the certainty of something is not confirmed, such as "It will rain

today," "behavior of someone for some situations," "A match between two teams or two players." These are probable

sentences for which we can assume that it will happen but not sure about it, so here we use probabilistic reasoning.

Need of probabilistic reasoning in AI:

o When there are unpredictable outcomes.

o When specifications or possibilities of predicates becomes too large to handle.

o When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve problems with uncertain knowledge:

o Bayes' rule

o Bayesian Statistics

As probabilistic reasoning uses probability and related terms, so before understanding probabilistic reasoning, let's

understand some common terms:

Probability: Probability can be defined as a chance that an uncertain event will occur. It is the numerical measure of

the likelihood that an event will occur. The value of probability always remains between 0 and 1 that represent ideal

uncertainties.

TELEGRAM: @eduengineering

0 ≤ P(A) ≤ 1, where P(A) is the probability of an event A.

P(A) = 0, indicates total uncertainty in an event A.

P(A) =1, indicates total certainty in an event A.

We can find the probability of an uncertain event by using the below formula.

o P(¬A) = probability of a not happening event.

o P(¬A) + P(A) = 1.

Event: Each possible outcome of a variable is called an event.

Sample space: The collection of all possible events is called sample space.

Random variables: Random variables are used to represent the events and objects in the real world.

Prior probability: The prior probability of an event is probability computed before observing new information.

Posterior Probability: The probability that is calculated after all evidence or information has taken into account. It is

a combination of prior probability and new information.

Conditional probability:

Conditional probability is a probability of occurring an event when another event has already happened.

Let's suppose, we want to calculate the event A when event B has already occurred, "the probability of A under the

conditions of B", it can be written as:

Where P(A⋀B)= Joint probability of a and B

P(B)= Marginal probability of B.

If the probability of A is given and we need to find the probability of B, then it will be given as:

It can be explained by using the below Venn diagram, where B is occurred event, so sample space will be reduced to

set B, and now we can only calculate event A when event B is already occurred by dividing the probability of P(A⋀B)

by P(B).

TELEGRAM: @eduengineering

Example:

In a class, there are 70% of the students who like English and 40% of the students who likes English and mathematics,

and then what is the percent of students those who like English also like mathematics?

Solution:

Let, A is an event that a student likes Mathematics

B is an event that a student likes English.

Hence, 57% are the students who like English also like Mathematics.

4. Bayesian networks or Belief networks

Bayesian Belief Network in artificial intelligence

Bayesian belief network is key computer technology for dealing with probabilistic events and to solve a problem

which has uncertainty. We can define a Bayesian network as:

"A Bayesian network is a probabilistic graphical model which represents a set of variables and their conditional

dependencies using a directed acyclic graph."

It is also called a Bayes network, belief network, decision network, or Bayesian model.

Bayesian networks are probabilistic, because these networks are built from a probability distribution, and also use

probability theory for prediction and anomaly detection.

Real world applications are probabilistic in nature, and to represent the relationship between multiple events, we need

a Bayesian network. It can also be used in various tasks including prediction, anomaly detection, diagnostics,

automated insight, reasoning, time series prediction, and decision making under uncertainty.

TELEGRAM: @eduengineering

Bayesian Network can be used for building models from data and experts opinions, and it consists of two parts:

o Directed Acyclic Graph

o Table of conditional probabilities.

The generalized form of Bayesian network that represents and solve decision problems under uncertain knowledge is

known as an Influence diagram.

A Bayesian network graph is made up of nodes and Arcs (directed links), where:

o Each node corresponds to the random variables, and a variable can be continuous or discrete.

o Arc or directed arrows represent the causal relationship or conditional probabilities between random

variables. These directed links or arrows connect the pair of nodes in the graph.

These links represent that one node directly influence the other node, and if there is no directed link that

means that nodes are independent with each other

o In the above diagram, A, B, C, and D are random variables represented by the nodes of the

network graph.

o If we are considering node B, which is connected with node A by a directed arrow, then node

A is called the parent of Node B.

o Node C is independent of node A.

Note: The Bayesian network graph does not contain any cyclic graph. Hence, it is known as a directed acyclic

graph or DAG

The Bayesian network has mainly two components:

o Causal Component

o Actual numbers

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi)), which determines the

effect of the parent on that node.

Bayesian network is based on Joint probability distribution and conditional probability. So let's first understand the

joint probability distribution:

TELEGRAM: @eduengineering

Joint probability distribution:

If we have variables x1, x2, x3,....., xn, then the probabilities of a different combination of x1, x2, x3.. xn, are known as

Joint probability distribution.

P[x1, x2, x3,....., xn], it can be written as the following way in terms of the joint probability distribution.

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn]

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn].

In general for each variable Xi, we can write the equation as:

P(Xi|Xi-1,........., X1) = P(Xi |Parents(Xi))

Explanation of Bayesian network:

Let's understand the Bayesian network through an example by creating a directed acyclic graph:

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably responds at detecting

a burglary but also responds for minor earthquakes. Harry has two neighbors David and Sophia, who have taken a

responsibility to inform Harry at work when they hear the alarm. David always calls Harry when he hears the alarm,

but sometimes he got confused with the phone ringing and calls at that time too. On the other hand, Sophia likes to

listen to high music, so sometimes she misses to hear the alarm. Here we would like to compute the probability of

Burglary Alarm.

Problem:

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an earthquake occurred, and David and Sophia both called the

Harry.

Solution:

o The Bayesian network for the above problem is given below. The network structure is showing that burglary

and earthquake is the parent node of the alarm and directly affecting the probability of alarm's going off,

but David and Sophia's calls depend on alarm probability.

o The network is representing that our assumptions do not directly perceive the burglary and also do not

notice the minor earthquake, and they also not confer before calling.

o The conditional distributions for each node are given as conditional probabilities table or CPT.

o Each row in the CPT must be sum to 1 because all the entries in the table represent an exhaustive set of

cases for the variable.

o In CPT, a boolean variable with k boolean parents contains 2K probabilities. Hence, if there are two parents,

then CPT will contain 4 probability values

List of all events occurring in this network:

o Burglary (B)

o Earthquake(E)

o Alarm(A)

o David Calls(D)

TELEGRAM: @eduengineering

o Sophia calls(S)

We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can rewrite the above

probability statement using joint probability distribution:

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E]

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

= P [D| A]. P [S| A, B, E]. P[A, B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B |E]. P[E]

Let's take the observed probability for the Burglary and earthquake component:

P(B= True) = 0.002, which is the probability of burglary.

P(B= False)= 0.998, which is the probability of no burglary.

P(E= True)= 0.001, which is the probability of a minor earthquake

P(E= False)= 0.999, Which is the probability that an earthquake not occurred.

We can provide the conditional probabilities as per the below tables:

Conditional probability table for Alarm A:

The Conditional probability of Alarm A depends on Burglar and earthquake:

TELEGRAM: @eduengineering

B E P(A= True) P(A= False)

True True 0.94 0.06

True False 0.95 0.04

False True 0.31 0.69

False False 0.001 0.999

Conditional probability table for David Calls:

The Conditional probability of David that he will call depends on the probability of Alarm.

A P(D= True) P(D= False)

True 0.91 0.09

False 0.05 0.95

Conditional probability table for Sophia Calls:

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm."

A P(S= True) P(S= False)

True 0.75 0.25

False 0.02 0.98

From the formula of joint distribution, we can write the problem statement in the form of probability distribution:

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E).

= 0.75* 0.91* 0.001* 0.998*0.999

= 0.00068045.

Hence, a Bayesian network can answer any query about the domain by using Joint distribution.

The semantics of Bayesian Network:

There are two ways to understand the semantics of the Bayesian network, which is given below:

1. To understand the network as the representation of the Joint probability distribution.

It is helpful to understand how to construct the network.

2. To understand the network as an encoding of a collection of conditional independence statements.

It is helpful in designing inference procedure.

TELEGRAM: @eduengineering

5. Inference in Bayesian Networks

1. Exact inference

2. Approximate inference

1. Exact inference:

In exact inference, we analytically compute the conditional probability distribution over the
variables of interest.

But sometimes, that’s too hard to do, in which case we can use approximation techniques based on
statistical sampling

Given a Bayesian network, what questions might we want to ask?

• Conditional probability query: P(x | e)

• Maximum a posteriori probability: What value of x maximizes P(x|e) ?

General question: What’s the whole probability distribution over variable X given evidence e, P(X |
e)?

In our discrete probability situation, the only way to answer a MAP query is to compute the
probability of x given e for all possible values of x and see which one is greatest

So, in general, we’d like to be able to compute a whole probability distribution over some variable or
variables X, given instantiations of a set of variables e

Using the joint distribution

To answer any query involving a conjunction of variables, sum over the variables not involved in the
query

Given the joint distribution over the variables, we can easily answer any question about the value of
a single variable by summing (or marginalizing) over the other variables.

So, in a domain with four variables, A, B, C, and D, the probability that variable D has value d is the
sum over all possible combinations of values of the other three variables of the joint probability of
all four values. This is exactly the same as the procedure we went through in the last lecture, where
to compute the probability of cavity, we added up the probability of cavity and toothache and the
probability of cavity and not toothache.

TELEGRAM: @eduengineering

In general, we’ll use the first notation, with a single summation indexed by a list of variable names,
and a joint probability expression that mentions values of those variables. But here we can see the
completely written-out definition, just so we all know what the shorthand is supposed to mean.

To compute a conditional probability, we reduce it to a ratio of conjunctive queries using the
definition of conditional probability, and then answer each of those queries by marginalizing out the
variables not mentioned.

In the numerator, here, you can see that we’re only summing over variables A and C, because b and
d are instantiated in the query.

We’re going to learn a general purpose algorithm for answering these joint queries fairly efficiently.
We’ll start by looking at a very simple case to build up our intuitions, then we’ll write down the
algorithm, then we’ll apply it to a more complex case.

Here’s our very simple case. It’s a bayes net with four nodes, arranged in a chain.

TELEGRAM: @eduengineering

So, we know from before that the probability that variable D has some value little d is the sum over
A, B, and C of the joint distribution, with d fixed.

Now, using the chain rule of Bayesian networks, we can write down the joint probability as a
product over the nodes of the probability of each node’s value given the values of its parents. So, in
this case, we get P(d|c) times P(c|b) times P(b|a) times P(a).

This expression gives us a method for answering the query, given the conditional probabilities that
are stored in the net. And this method can be applied directly to any other bayes net. But there’s a
problem with it: it requires enumerating all possible combinations of assignments to A, B, and C, and
then, for each one, multiplying the factors for each node. That’s an enormous amount of work and
we’d like to avoid it if at all possible.

So, we’ll try rewriting the expression into something that might be more efficient to evaluate. First,
we can make our summation into three separate summations, one over each variable.

Then, by distributivity of addition over multiplication, we can push the summations in, so that the
sum over A includes all the terms that mention A, but no others, and so on. It’s pretty clear that this
expression is the same as the previous one in value, but it can be evaluated more efficiently. We’re
still, eventually, enumerating all assignments to the three variables, but we’re doing somewhat
fewer multiplications than before. So this is still not completely satisfactory.

If you look, for a minute, at the terms inside the summation over A, you’ll see that we’re doing these
multiplications over for each value of C, which isn’t necessary, because they’re independent of C.
Our idea, here, is to do the multiplications once and store them for later use. So, first, for each value
of A and B, we can compute the product, generating a two dimensional matrix.

TELEGRAM: @eduengineering

Then, we can sum over the rows of the matrix, yielding one value of the sum for each possible value
of b.

We’ll call this set of values, which depends on b, f1 of b.

Now, we can substitute f1 of b in for the sum over A in our previous expression. And, effectively, we
can remove node A from our diagram. Now, we express the contribution of b, which takes the
contribution of a into account, as f_1 of b.

We can continue the process in basically the same way. We can look at the summation over b and
see that the only other variable it involves is c. We can summarize those products as a set of factors,
one for each value of c. We’ll call those factors f_2 of c.

We substitute f_2 of c into the formula, remove node b from the diagram, and now we’re down to a
simple expression in which d is known and we have to sum over values of c.

TELEGRAM: @eduengineering

Variable Elimination Algorithm

Given a Bayesian network, and an elimination order for the non-query variables , compute

For i = m downto 1

 remove all the factors that mention Xi

 multiply those factors, getting a value for each combination of mentioned variables

 sum over Xi

 put this new factor into the factor set

That was a simple special case. Now we can look at the algorithm in the general case. Let’s assume
that we’re given a Bayesian network and an ordering on the variables that aren’t fixed in the query.
We’ll come back later to the question of the influence of the order, and how we might find a good
one.

We can express the probability of the query variables as a sum over each value of each of the non-
query variables of a product over each node in the network, of the probability that that variable has
the given value given the values of its parents.

So, we’ll eliminate the variables from the inside out. Starting with variable Xm and finishing with
variable X1.

To eliminate variable Xi, we start by gathering up all of the factors that mention Xi, and removing
them from our set of factors. Let’s say there are k such factors.

Now, we make a k+1 dimensional table, indexed by Xi as well as each of the other variables that is
mentioned in our set of factors.

We then sum the table over the Xi dimension, resulting in a k-dimensional table.

This table is our new factor, and we put a term for it back into our set of factors.

Once we’ve eliminated all the summations, we have the desired value.

One more example

TELEGRAM: @eduengineering

TELEGRAM: @eduengineering

Here’s a more complicated example, to illustrate the variable elimination algorithm in a more
general case. We have this big network that encodes a domain for diagnosing lung disease.
(Dyspnea, as I understand it, is shortness of breath).

We’ll do variable elimination on this graph using elimination order A, B, L, T, S, X, V.

So, we start by eliminating V. We gather the two terms that mention V and see that they also
involve variable T. So, we compute the product for each value of T, and summarize those in the
factor f1 of T.

Now we can substitute that factor in for the summation, and remove the node from the network.

The next variable to be eliminated is X. There is actually only one term involving X, and it also
involves variable A. So, for each value of A, we compute the sum over X of P(x|a). But wait! We
know what this value is! If we fix a and sum over x, these probabilities have to add up to 1.

So, rather than adding another factor to our expression, we can just remove the whole sum. In
general, the only nodes that will have an influence on the probability of D are its ancestors.

Now, it’s time to eliminate S. We find that there are three terms involving S, and we gather them
into the sum. These three terms involve two other variables, B and L. So we have to make a factor
that specifies, for each value of B and L, the value of the sum of products.

We’ll call that factor f_2 of b and l.

Now we can substitute that factor back into our expression. We can also eliminate node S. But in
eliminating S, we’ve added a direct dependency between L and B (they used to be dependent via S,
but now the dependency is encoded explicitly in f2(b). We’ll show that in the graph by drawing a line
between the two nodes. It’s not exactly a standard directed conditional dependence, but it’s still
useful to show that they’re coupled.

Now we eliminate T. It involves two terms, which themselves involve variables A and L. So we make
a new factor f3 of A and L.

We can substitute in that factor and eliminate T. We’re getting close!

TELEGRAM: @eduengineering

Next we eliminate L. It involves these two factors, which depend on variables A and B. So we make a
new factor, f4 of A and B, and substitute it in. We remove node L, but couple A and B.

At this point, we could just do the summations over A and B and be done. But to finish out the
algorithm the way a computer would, it’s time to eliminate variable B.

It involves both of our remaining terms, and it seems to depend on variables A and D. However, in
this case, we’re interested in the probability of a particular value, little d of D, and so the variable d
is instantiated. Thus, we can treat it as a constant in this expression, and we only need to generate a
factor over a, which we’ll call f5 of a. And we can now, in some sense, remove D from our network
as well (because we’ve already factored it into our answer).

Finally, to get the probability that variable D has value little d, we simply sum factor f5 over all
values of a. Yay! We did it.

Properties of Variable Elimination

Let’s see how the variable elimination algorithm performs, both in theory and in practice.

 Time is exponential in size of largest factor

 Bad elimination order can generate huge factors

 NP Hard to find the best elimination order

TELEGRAM: @eduengineering

 Even the best elimination order may generate large factors

 There are reasonable heuristics for picking an elimination order (such as choosing the
variable that results in the smallest next factor)

 Inference in polytrees (nets with no cycles) is linear in size of the network (the largest CPT)
 Many problems with very large nets have only small factors, and thus efficient inference

 First of all, it’s pretty easy to see that it runs in time exponential in the number of variables involved in
the largest factor. Creating a factor with k variables involves making a k+1 dimensional table. If you have
b values per variable, that’s a table of size b^(k+1). To make each entry, you have to multiply at most n
numbers, where n is the number of nodes. We have to do this for each variable to be eliminated (which
is usually close to n). So we have something like time = O(n^2 b^k).

How big the factors are depends on the elimination order. You’ll see in one of the recitation exercises
just how dramatic the difference in factor sizes can be. A bad elimination order can generate huge
factors.

So, we’d like to use the elimination order that generates the smallest factors. Unfortunately, it turns out
to be NP hard to find the best elimination order.

At least, there are some fairly reasonable heuristics for choosing an elimination order. It’s usually done
dynamically. So, rather than fixing the elimination order in advance, as we suggested in the algorithm
description, you can pick the next variable to be eliminated depending on the situation. In particular,
one reasonable heuristic is to pick the variable to eliminate next that will result in the smallest factor.
This greedy approach won’t always be optimal, but it’s not usually too bad.

There is one case where Bayes net inference in general, and the variable elimination algorithm in
particular is fairly efficient, and that’s when the network is a polytree. A polytree is a network with no
cycles. That is, a network in which, for any two nodes, there is only one path between them. In a
polytree, inference is linear in the size of the network, where the size of the network is defined to be the
size of the largest conditional probability table (or exponential in the maximum number of parents of
any node). In a polytree, the optimal elimination order is to start at the root nodes, and work
downwards, always eliminating a variable that no longer has any parents. In doing so, we never
introduce additional connections into the network.

So, inference in polytrees is efficient, and even in many large non-polytree networks, it’s possible to
keep the factors small, and therefore to do inference relatively efficiently.

When the network is such that the factors are, of necessity, large, we’ll have to turn to a different class
of methods.

2. Approximate inference:

Sampling

To get approximate answer we can do stochastic simulation (sampling).

TELEGRAM: @eduengineering

Another strategy, which is a theme that comes up also more and more in AI actually, is to say, well, we
didn't really want the right answer anyway. Let's try to do an approximation. And you can also show that
it's computationally hard to get an approximation that's within epsilon of the answer that you want, but
again that doesn't keep us from trying.

So, the other thing that we can do is the stochastic simulation or sampling. In sampling, what we do is
we look at the root nodes of our graph, and attached to this root node is some probability that A is going
to be true, right? Maybe it's .4. So we flip a coin that comes up heads with probability .4 and see if we
get true or false.

We flip our coin, let's say, and we get true for A -- this time. And now, given the assignment of true to A,
we look in the conditional probability table for B given A = true, and that gives us a probability for B.

Now, we flip a coin with that probability. Say we get False. We enter that into the table.

We do the same thing for C, and let’s say we get True.

Now, we look in the CPT for D given B and C, for the case where B is false and C is true, and we flip a coin
with that probability, in order to get a value for D.

So, there's one sample from the joint distribution of these four variables. And you can just keep doing
this, all day and all night, and generate a big pile of samples, using that algorithm. And now you can ask
various questions.

Estimate:

 P*(D|A) = #D,A / #A

Let's say you want to know the probability of D given A. How would you answer - - given all the
examples -- what would you do to compute the probability of D given A? You would just count. You’d
count the number of cases in which A and D were true, and you’d divide that by the number of cases in

TELEGRAM: @eduengineering

which A was true, and that would give you an unbiased estimate of the probability of D given A. The
more samples, the more confidence you’d have that the estimated probability is close to the true one.

Estimation

 Some probabilities are easier than others to estimate

 In generating the table, the rare events will not be well represented

 P(Disease| spots-on-your-tongue, sore toe)

 If spots-on-your-tongue and sore toe are not root nodes, you would generate a huge table but
the cases of interest would be very sparse in the table

 Importance sampling lets you focus on the set of cases that are important to answering your
question

It's going to turn out that some probabilities are easier than other ones to estimate.

Exactly because of the process we’re using to generate the samples, the majority of them will be the
typical cases. Oh, it's someone with a cold, someone with a cold, someone with a cold, someone with a
cold, someone with a cold, someone with malaria, someone with a cold, someone with a cold. So the
rare results are not going to come up very often. And so doing this sampling naively can make it really
hard to estimate the probability of a rare event. If it's something that happens one in ten thousand
times, well, you know for sure you're going to need, some number of tens of thousands of samples to
get even a reasonable estimate of that probability.

Imagine that you want to estimate the probability of some disease given -- oh, I don't know -- spots on
your tongue and a sore toe. Somebody walks in and they have a really peculiar set of symptoms, and
you want to know what's the probability that they have some disease.

Well, if the symptoms are root nodes, it's easy. If the symptoms were root nodes, you could just assign
the root nodes to have their observed values and then simulate the rest of the network as before.

But if the symptoms aren't root nodes then if you do naïve sampling, you would generate a giant table
of samples, and you'd have to go and look and say, gosh, how many cases do I have where somebody
has spots on their tongue and a sore toe; and the answer would be, well, maybe zero or not very many.

There’s a technique called importance sampling, which allows you to draw examples from a distribution
that’s going to be more helpful and then reweight them so that you can still get an unbiased estimate of
the desired conditional probability. It’s a bit beyond the scope of this class to get into the details, but it’s
an important and effective idea.

Recitation Problem

 • Do the variable elimination algorithm on the net below using the elimination order A,B,C (that is,
eliminate node C first). In computing P(D=d), what factors do you get?

• What if you wanted to compute the whole marginal distribution P(D)?

TELEGRAM: @eduengineering

Here’s the network we started with. We used elimination order C, B, A (we eliminated A first). Now
we’re going to explore what happens when we eliminate the variables in the opposite order. First, work
on the case we did, where we’re trying to calculate the probability that node D takes on a particular
value, little d. Remember that little d is a constant in this case. Now, do the case where we’re trying to
find the whole distribution over D, so we don’t know a particular value for little d.

Another Recitation Problem

Find an elimination order that keeps the factors small for the net below, or show that there is no such
order.

Here’s a pretty complicated graph. But notice that no node has more than 2 parents, so none of the
CPTs are huge. The question is, is this graph hard for variable elimination? More concretely, can you find
an elimination order that results only in fairly small factors? Is there an elimination order that generates
a huge factor?

The Last Recitation Problem

Bayesian networks (or related models) are often used in computer vision, but they almost always
require sampling. What happens when you try to do variable elimination on a model like the grid below?

TELEGRAM: @eduengineering

6. Casual Networks:

A causal network is an acyclic digraph arising from an evolution of a substitution system, and

representing its history. The illustration above shows a causal network corresponding to the rules

 (applied in a left-to-right scan) and initial condition .

The figure above shows the procedure for diagrammatically creating a causal network from

a mobile automaton.

In an evolution of a multiway system, each substitution event is a vertex in a causal network.

Two events which are related by causal dependence, meaning one occurs just before the other,

have an edge between the corresponding vertices in the causal network. More precisely, the edge

is a directed edge leading from the past event to the future event.

Some causal networks are independent of the choice of evolution, and these are called causally

invariant.

TELEGRAM: @eduengineering

https://mathworld.wolfram.com/AcyclicDigraph.html
https://mathworld.wolfram.com/SubstitutionSystem.html
https://mathworld.wolfram.com/MobileAutomaton.html
https://mathworld.wolfram.com/MultiwaySystem.html
https://mathworld.wolfram.com/CausalInvariance.html
https://mathworld.wolfram.com/CausalInvariance.html

LINK:

Causal Network:

https://mathworld.wolfram.com/CausalNetwork.html#:~:text=A%20causal%20network%

20is%20an,498%2C%20fig.

exact inference in BN – approximate inference in BN:

https://ocw.mit.edu/courses/6-825-techniques-in-artificial-intelligence-sma-5504-fall-

2002/7119c2c7a9d00760da07077d9c59c55f_Lecture16FinalPart1.pdf

bayesian-belief-network-in-artificial-intelligence:

https://www.javatpoint.com/bayesian-belief-network-in-artificial-intelligence

bayes-theorem-in-artifical-intelligence:

https://www.javatpoint.com/bayes-theorem-in-artifical-intelligence

probabilistic-reasoning-in-artifical-intelligence:

https://www.javatpoint.com/probabilistic-reasoning-in-artifical-intelligence

TELEGRAM: @eduengineering

https://mathworld.wolfram.com/CausalNetwork.html#:~:text=A%20causal%20network%20is%20an,498%2C%20fig
https://mathworld.wolfram.com/CausalNetwork.html#:~:text=A%20causal%20network%20is%20an,498%2C%20fig
https://ocw.mit.edu/courses/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/7119c2c7a9d00760da07077d9c59c55f_Lecture16FinalPart1.pdf
https://ocw.mit.edu/courses/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/7119c2c7a9d00760da07077d9c59c55f_Lecture16FinalPart1.pdf
https://www.javatpoint.com/bayesian-belief-network-in-artificial-intelligence
https://www.javatpoint.com/bayes-theorem-in-artifical-intelligence
https://www.javatpoint.com/probabilistic-reasoning-in-artifical-intelligence

WEBSITE: www.eduengineering.in

 Best website for Anna University Affiliated College Students
 Regular Updates for all Semesters
 All Department Notes AVAILABLE
 All Lab Manuals AVAILABLE
 Handwritten Notes AVAILABLE
 Printed Notes AVAILABLE
 Past Year Question Papers AVAILABLE
 Subject wise Question Banks AVAILABLE
 Important Questions for Semesters AVAILABLE
 Various Author Books AVAILABLE

CONNECT WITH US

TELEGRAM: @eduengineering

http://www.eduengineering.in/
https://telegram.me/eduengineering

	1. Acting under uncertainty
	Uncertainty:
	Causes of uncertainty:
	Bayes' theorem in Artificial intelligence
	Bayes' theorem:
	Applying Bayes' rule:
	Application of Bayes' theorem in Artificial intelligence:
	Probabilistic reasoning:
	Conditional probability:

	4. Bayesian networks or Belief networks
	Bayesian Belief Network in artificial intelligence
	Joint probability distribution:
	Explanation of Bayesian network:

